IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46593-1.html
   My bibliography  Save this article

Discovery of a small-molecule inhibitor that traps Polθ on DNA and synergizes with PARP inhibitors

Author

Listed:
  • William Fried

    (University of Southern California)

  • Mrityunjay Tyagi

    (Sidney Kimmel Cancer Center, Thomas Jefferson University)

  • Leonid Minakhin

    (Sidney Kimmel Cancer Center, Thomas Jefferson University)

  • Gurushankar Chandramouly

    (Sidney Kimmel Cancer Center, Thomas Jefferson University)

  • Taylor Tredinnick

    (Sidney Kimmel Cancer Center, Thomas Jefferson University)

  • Mercy Ramanjulu

    (Pennsylvania Biotechnology Center)

  • William Auerbacher

    (Sidney Kimmel Cancer Center, Thomas Jefferson University)

  • Marissa Calbert

    (Sidney Kimmel Cancer Center, Thomas Jefferson University
    Fels Cancer Institute for Personalized Medicine)

  • Timur Rusanov

    (University of Illinois at Chicago)

  • Trung Hoang

    (Janssen Biotech)

  • Nikita Borisonnik

    (Inc.)

  • Robert Betsch

    (Fox Chase Cancer Center)

  • John J. Krais

    (Fox Chase Cancer Center)

  • Yifan Wang

    (Fox Chase Cancer Center)

  • Umeshkumar M. Vekariya

    (Fels Cancer Institute for Personalized Medicine
    Temple University Lewis Katz School of Medicine)

  • John Gordon

    (Fels Cancer Institute for Personalized Medicine)

  • George Morton

    (Temple University School of Pharmacy)

  • Tatiana Kent

    (Sidney Kimmel Cancer Center, Thomas Jefferson University)

  • Tomasz Skorski

    (Fels Cancer Institute for Personalized Medicine
    Temple University Lewis Katz School of Medicine)

  • Neil Johnson

    (Fox Chase Cancer Center)

  • Wayne Childers

    (Pennsylvania Biotechnology Center
    Temple University School of Pharmacy)

  • Xiaojiang S. Chen

    (University of Southern California
    Pennsylvania Biotechnology Center)

  • Richard T. Pomerantz

    (Sidney Kimmel Cancer Center, Thomas Jefferson University
    Pennsylvania Biotechnology Center)

Abstract

The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4–6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in the open configuration. Remarkably, Polθi binding to the Polθ-pol:DNA/DNA closed complex traps the polymerase on DNA for more than forty minutes which elucidates the inhibitory mechanism of action. These data reveal a unique small-molecule DNA polymerase:DNA trapping mechanism that induces synthetic lethality in HR-deficient cells and potentiates the activity of PARPi.

Suggested Citation

  • William Fried & Mrityunjay Tyagi & Leonid Minakhin & Gurushankar Chandramouly & Taylor Tredinnick & Mercy Ramanjulu & William Auerbacher & Marissa Calbert & Timur Rusanov & Trung Hoang & Nikita Boriso, 2024. "Discovery of a small-molecule inhibitor that traps Polθ on DNA and synergizes with PARP inhibitors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46593-1
    DOI: 10.1038/s41467-024-46593-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46593-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46593-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wanjuan Feng & Dennis A. Simpson & Juan Carvajal-Garcia & Brandon A. Price & Rashmi J. Kumar & Lisle E. Mose & Richard D. Wood & Naim Rashid & Jeremy E. Purvis & Joel S. Parker & Dale A. Ramsden & Gao, 2019. "Genetic determinants of cellular addiction to DNA polymerase theta," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. Wouter Koole & Robin van Schendel & Andrea E. Karambelas & Jane T. van Heteren & Kristy L. Okihara & Marcel Tijsterman, 2014. "A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites," Nature Communications, Nature, vol. 5(1), pages 1-10, May.
    3. Raphael Ceccaldi & Jessica C. Liu & Ravindra Amunugama & Ildiko Hajdu & Benjamin Primack & Mark I. R. Petalcorin & Kevin W. O’Connor & Panagiotis A. Konstantinopoulos & Stephen J. Elledge & Simon J. B, 2015. "Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair," Nature, Nature, vol. 518(7538), pages 258-262, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fumiaki Ito & Ziyuan Li & Leonid Minakhin & Gurushankar Chandramouly & Mrityunjay Tyagi & Robert Betsch & John J. Krais & Bernadette Taberi & Umeshkumar Vekariya & Marissa Calbert & Tomasz Skorski & N, 2024. "Structural basis for a Polθ helicase small-molecule inhibitor revealed by cryo-EM," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Daniel J. Laverty & Shiv K. Gupta & Gary A. Bradshaw & Alexander S. Hunter & Brett L. Carlson & Nery Matias Calmo & Jiajia Chen & Shulan Tian & Jann N. Sarkaria & Zachary D. Nagel, 2024. "ATM inhibition exploits checkpoint defects and ATM-dependent double strand break repair in TP53-mutant glioblastoma," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. John J. Krais & David J. Glass & Ilse Chudoba & Yifan Wang & Wanjuan Feng & Dennis Simpson & Pooja Patel & Zemin Liu & Ryan Neumann-Domer & Robert G. Betsch & Andrea J. Bernhardy & Alice M. Bradbury &, 2023. "Genetic separation of Brca1 functions reveal mutation-dependent Polθ vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. J. A. Kamp & B. B. L. G. Lemmens & R. J. Romeijn & S. C. Changoer & R. Schendel & M. Tijsterman, 2021. "Helicase Q promotes homology-driven DNA double-strand break repair and prevents tandem duplications," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Anne Margriet Heijink & Colin Stok & David Porubsky & Eleni Maria Manolika & Jurrian K. Kanter & Yannick P. Kok & Marieke Everts & H. Rudolf Boer & Anastasia Audrey & Femke J. Bakker & Elles Wierenga , 2022. "Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Megan E. Luedeman & Susanna Stroik & Wanjuan Feng & Adam J. Luthman & Gaorav P. Gupta & Dale A. Ramsden, 2022. "Poly(ADP) ribose polymerase promotes DNA polymerase theta-mediated end joining by activation of end resection," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yi-Li Feng & Qian Liu & Ruo-Dan Chen & Si-Cheng Liu & Zhi-Cheng Huang & Kun-Ming Liu & Xiao-Ying Yang & An-Yong Xie, 2022. "DNA nicks induce mutational signatures associated with BRCA1 deficiency," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. George E. Ronson & Katarzyna Starowicz & Elizabeth J. Anthony & Ann Liza Piberger & Lucy C. Clarke & Alexander J. Garvin & Andrew D. Beggs & Celina M. Whalley & Matthew J. Edmonds & James F. J. Beesle, 2023. "Mechanisms of synthetic lethality between BRCA1/2 and 53BP1 deficiencies and DNA polymerase theta targeting," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Jeffrey Patterson-Fortin & Heta Jadhav & Constantia Pantelidou & Tin Phan & Carter Grochala & Anita K. Mehta & Jennifer L. Guerriero & Gerburg M. Wulf & Brian M. Wolpin & Ben Z. Stanger & Andrew J. Ag, 2023. "RETRACTED ARTICLE: Polymerase θ inhibition activates the cGAS-STING pathway and cooperates with immune checkpoint blockade in models of BRCA-deficient cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Zhiqian Li & Lang You & Anita Hermann & Ethan Bier, 2024. "Developmental progression of DNA double-strand break repair deciphered by a single-allele resolution mutation classifier," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Thomas E. Wilson & Samreen Ahmed & Amanda Winningham & Thomas W. Glover, 2024. "Replication stress induces POLQ-mediated structural variant formation throughout common fragile sites after entry into mitosis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46593-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.