IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46342-4.html
   My bibliography  Save this article

Supramolecular catalyst with [FeCl4] unit boosting photoelectrochemical seawater splitting via water nucleophilic attack pathway

Author

Listed:
  • Jiaming Miao

    (Nanjing University of Science and Technology)

  • Cheng Lin

    (Nanjing University of Science and Technology)

  • Xiaojia Yuan

    (Nanjing University of Science and Technology)

  • Yang An

    (Nanjing University of Science and Technology)

  • Yan Yang

    (Nanjing University of Science and Technology)

  • Zhaosheng Li

    (Nanjing University
    Nanjing University)

  • Kan Zhang

    (Nanjing University of Science and Technology)

Abstract

Propelled by the structure of water oxidation co-catalysts in natural photosynthesis, molecular co-catalysts have long been believed to possess the developable potential in artificial photosynthesis. However, the interfacial complexity between light absorber and molecular co-catalyst limits its structural stability and charge transfer efficiency. To overcome the challenge, a supramolecular scaffold with the [FeCl4] catalytic units is reported, which undergo a water-nucleophilic attack of the water oxidation reaction, while the supramolecular matrix can be in-situ grown on the surface of photoelectrode through a simple chemical polymerization to be a strongly coupled interface. A well-defined BiVO4 photoanode hybridized with [FeCl4] units in polythiophene reaches 4.72 mA cm−2 at 1.23 VRHE, which also exhibits great stability for photoelectrochemical seawater splitting due to the restraint on chlorine evolution reaction by [FeCl4] units and polythiophene. This work provides a novel solution to the challenge of the interface charge transfer of molecular co-catalyst hybridized photoelectrode.

Suggested Citation

  • Jiaming Miao & Cheng Lin & Xiaojia Yuan & Yang An & Yan Yang & Zhaosheng Li & Kan Zhang, 2024. "Supramolecular catalyst with [FeCl4] unit boosting photoelectrochemical seawater splitting via water nucleophilic attack pathway," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46342-4
    DOI: 10.1038/s41467-024-46342-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46342-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46342-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jingguo Li & Wenchao Wan & Carlos A. Triana & Hang Chen & Yonggui Zhao & Christos K. Mavrokefalos & Greta R. Patzke, 2021. "Reaction kinetics and interplay of two different surface states on hematite photoanodes for water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Nastaran Ranjbar Sahraie & Ulrike I. Kramm & Julian Steinberg & Yuanjian Zhang & Arne Thomas & Tobias Reier & Jens-Peter Paraknowitsch & Peter Strasser, 2015. "Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, P.Z. & Sun, J. & He, C.X. & Wu, M.C. & Zhao, T.S., 2024. "Modeling proton exchange membrane fuel cells with platinum-group-metal-free catalysts," Applied Energy, Elsevier, vol. 360(C).
    2. Yuan Lu & Byoung Guan Lee & Cheng Lin & Tae-Kyung Liu & Zhipeng Wang & Jiaming Miao & Sang Ho Oh & Ki Chul Kim & Kan Zhang & Jong Hyeok Park, 2024. "Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO4 photoanodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Lopes, Thiago & Beruski, Otavio & Manthanwar, Amit M. & Korkischko, Ivan & Pugliesi, Reynaldo & Stanojev, Marco Antonio & Andrade, Marcos Leandro Garcia & Pistikopoulos, Efstratios N. & Perez, Joelma , 2019. "Spatially resolved oxygen reaction, water, and temperature distribution: Experimental results as a function of flow field and implications for polymer electrolyte fuel cell operation," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Wanlin Zhou & Hui Su & Weiren Cheng & Yuanli Li & Jingjing Jiang & Meihuan Liu & Feifan Yu & Wei Wang & Shiqiang Wei & Qinghua Liu, 2022. "Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46342-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.