Author
Listed:
- Ilya Tsukalov
(Universidad Autónoma de Madrid)
- Ildefonso Sánchez-Cerrillo
(Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP
CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III)
- Olga Rajas
(Pneumology Unit from Hospital Universitario La Princesa)
- Elena Avalos
(Pneumology Unit from Hospital Universitario La Princesa)
- Gorane Iturricastillo
(Pneumology Unit from Hospital Universitario La Princesa)
- Laura Esparcia
(Universidad Autónoma de Madrid
Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP)
- María José Buzón
(Universitat Autònoma de Barcelona)
- Meritxell Genescà
(Universitat Autònoma de Barcelona)
- Camila Scagnetti
(Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP)
- Olga Popova
(Universidad Autónoma de Madrid)
- Noa Martin-Cófreces
(Universidad Autónoma de Madrid
Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP)
- Marta Calvet-Mirabent
(Universidad Autónoma de Madrid
Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP)
- Ana Marcos-Jimenez
(Universidad Autónoma de Madrid
Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP)
- Pedro Martínez-Fleta
(Universidad Autónoma de Madrid
Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP)
- Cristina Delgado-Arévalo
(Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP)
- Ignacio los Santos
(CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III
Infectious Diseases Unit from Hospital Universitario La Princesa)
- Cecilia Muñoz-Calleja
(Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP
CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III)
- María José Calzada
(Universidad Autónoma de Madrid
Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III)
- Isidoro González Álvaro
(Rheumatology Department from Hospital Universitario La Princesa. Instituto de Investigación Sanitaria-Princesa IIS-IP)
- José Palacios-Calvo
(Hospital Universitario Ramón y Cajal. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad de Alcalá. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC))
- Arantzazu Alfranca
(Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP
CIBER Cardiovascular, Instituto de Salud Carlos III)
- Julio Ancochea
(Pneumology Unit from Hospital Universitario La Princesa)
- Francisco Sánchez-Madrid
(Universidad Autónoma de Madrid
Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP
CIBER Cardiovascular, Instituto de Salud Carlos III)
- Enrique Martin-Gayo
(Universidad Autónoma de Madrid
Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP
CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III)
Abstract
Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.
Suggested Citation
Ilya Tsukalov & Ildefonso Sánchez-Cerrillo & Olga Rajas & Elena Avalos & Gorane Iturricastillo & Laura Esparcia & María José Buzón & Meritxell Genescà & Camila Scagnetti & Olga Popova & Noa Martin-Cóf, 2024.
"NFκB and NLRP3/NLRC4 inflammasomes regulate differentiation, activation and functional properties of monocytes in response to distinct SARS-CoV-2 proteins,"
Nature Communications, Nature, vol. 15(1), pages 1-18, December.
Handle:
RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46322-8
DOI: 10.1038/s41467-024-46322-8
Download full text from publisher
References listed on IDEAS
- Qian Zhang & Paul Bastard & Aurélie Cobat & Jean-Laurent Casanova, 2022.
"Human genetic and immunological determinants of critical COVID-19 pneumonia,"
Nature, Nature, vol. 603(7902), pages 587-598, March.
- Fumitaka Hayashi & Kelly D. Smith & Adrian Ozinsky & Thomas R. Hawn & Eugene C. Yi & David R. Goodlett & Jimmy K. Eng & Shizuo Akira & David M. Underhill & Alan Aderem, 2001.
"The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5,"
Nature, Nature, vol. 410(6832), pages 1099-1103, April.
Full references (including those not matched with items on IDEAS)
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
- Sunil K. Ahuja & Muthu Saravanan Manoharan & Grace C. Lee & Lyle R. McKinnon & Justin A. Meunier & Maristella Steri & Nathan Harper & Edoardo Fiorillo & Alisha M. Smith & Marcos I. Restrepo & Anne P. , 2023.
"Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection,"
Nature Communications, Nature, vol. 14(1), pages 1-31, December.
- Hideki Ogura & Jin Gohda & Xiuyuan Lu & Mizuki Yamamoto & Yoshio Takesue & Aoi Son & Sadayuki Doi & Kazuyuki Matsushita & Fumitaka Isobe & Yoshihiro Fukuda & Tai-Ping Huang & Takamasa Ueno & Naomi Mam, 2022.
"Dysfunctional Sars-CoV-2-M protein-specific cytotoxic T lymphocytes in patients recovering from severe COVID-19,"
Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Nikaïa Smith & Céline Possémé & Vincent Bondet & Jamie Sugrue & Liam Townsend & Bruno Charbit & Vincent Rouilly & Violaine Saint-André & Tom Dott & Andre Rodriguez Pozo & Nader Yatim & Olivier Schwart, 2022.
"Defective activation and regulation of type I interferon immunity is associated with increasing COVID-19 severity,"
Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Manon Venet & Margarida Sa Ribeiro & Elodie Décembre & Alicia Bellomo & Garima Joshi & Célia Nuovo & Marine Villard & David Cluet & Magali Perret & Rémi Pescamona & Helena Paidassi & Thierry Walzer & , 2023.
"Severe COVID-19 patients have impaired plasmacytoid dendritic cell-mediated control of SARS-CoV-2,"
Nature Communications, Nature, vol. 14(1), pages 1-21, December.
- Matthew C. Woodruff & Kevin S. Bonham & Fabliha A. Anam & Tiffany A. Walker & Caterina E. Faliti & Yusho Ishii & Candice Y. Kaminski & Martin C. Ruunstrom & Kelly Rose Cooper & Alexander D. Truong & A, 2023.
"Chronic inflammation, neutrophil activity, and autoreactivity splits long COVID,"
Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Al Ozonoff & Naresh Doni Jayavelu & Shanshan Liu & Esther Melamed & Carly E. Milliren & Jingjing Qi & Linda N. Geng & Grace A. McComsey & Charles B. Cairns & Lindsey R. Baden & Joanna Schaenman & Albe, 2024.
"Features of acute COVID-19 associated with post-acute sequelae of SARS-CoV-2 phenotypes: results from the IMPACC study,"
Nature Communications, Nature, vol. 15(1), pages 1-17, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46322-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.