IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46142-w.html
   My bibliography  Save this article

Empirical data drift detection experiments on real-world medical imaging data

Author

Listed:
  • Ali Kore

    (Vector Institute)

  • Elyar Abbasi Bavil

    (University of Toronto)

  • Vallijah Subasri

    (University Health Network)

  • Moustafa Abdalla

    (Massachusetts General Hospital)

  • Benjamin Fine

    (Trillium Health Partners
    University of Toronto)

  • Elham Dolatabadi

    (Vector Institute
    York University)

  • Mohamed Abdalla

    (Trillium Health Partners)

Abstract

While it is common to monitor deployed clinical artificial intelligence (AI) models for performance degradation, it is less common for the input data to be monitored for data drift – systemic changes to input distributions. However, when real-time evaluation may not be practical (eg., labeling costs) or when gold-labels are automatically generated, we argue that tracking data drift becomes a vital addition for AI deployments. In this work, we perform empirical experiments on real-world medical imaging to evaluate three data drift detection methods’ ability to detect data drift caused (a) naturally (emergence of COVID-19 in X-rays) and (b) synthetically. We find that monitoring performance alone is not a good proxy for detecting data drift and that drift-detection heavily depends on sample size and patient features. Our work discusses the need and utility of data drift detection in various scenarios and highlights gaps in knowledge for the practical application of existing methods.

Suggested Citation

  • Ali Kore & Elyar Abbasi Bavil & Vallijah Subasri & Moustafa Abdalla & Benjamin Fine & Elham Dolatabadi & Mohamed Abdalla, 2024. "Empirical data drift detection experiments on real-world medical imaging data," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46142-w
    DOI: 10.1038/s41467-024-46142-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46142-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46142-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Todd J. Levy & Kevin Coppa & Jinxuan Cang & Douglas P. Barnaby & Marc D. Paradis & Stuart L. Cohen & Alex Makhnevich & David Klaveren & David M. Kent & Karina W. Davidson & Jamie S. Hirsch & Theodoros, 2022. "Development and validation of self-monitoring auto-updating prognostic models of survival for hospitalized COVID-19 patients," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mélanie Roschewitz & Galvin Khara & Joe Yearsley & Nisha Sharma & Jonathan J. James & Éva Ambrózay & Adam Heroux & Peter Kecskemethy & Tobias Rijken & Ben Glocker, 2023. "Automatic correction of performance drift under acquisition shift in medical image classification," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46142-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.