IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46114-0.html
   My bibliography  Save this article

Inhibition of mitochondrial folate metabolism drives differentiation through mTORC1 mediated purine sensing

Author

Listed:
  • Martha M. Zarou

    (University of Glasgow)

  • Kevin M. Rattigan

    (University of Glasgow)

  • Daniele Sarnello

    (University of Glasgow)

  • Engy Shokry

    (Cancer Research UK Scotland Institute)

  • Amy Dawson

    (University of Glasgow)

  • Angela Ianniciello

    (University of Glasgow)

  • Karen Dunn

    (University of Glasgow)

  • Mhairi Copland

    (University of Glasgow)

  • David Sumpton

    (Cancer Research UK Scotland Institute)

  • Alexei Vazquez

    (University of Glasgow)

  • G. Vignir Helgason

    (University of Glasgow)

Abstract

Supporting cell proliferation through nucleotide biosynthesis is an essential requirement for cancer cells. Hence, inhibition of folate-mediated one carbon (1C) metabolism, which is required for nucleotide synthesis, has been successfully exploited in anti-cancer therapy. Here, we reveal that mitochondrial folate metabolism is upregulated in patient-derived leukaemic stem cells (LSCs). We demonstrate that inhibition of mitochondrial 1C metabolism through impairment of de novo purine synthesis has a cytostatic effect on chronic myeloid leukaemia (CML) cells. Consequently, changes in purine nucleotide levels lead to activation of AMPK signalling and suppression of mTORC1 activity. Notably, suppression of mitochondrial 1C metabolism increases expression of erythroid differentiation markers. Moreover, we find that increased differentiation occurs independently of AMPK signalling and can be reversed through reconstitution of purine levels and reactivation of mTORC1. Of clinical relevance, we identify that combination of 1C metabolism inhibition with imatinib, a frontline treatment for CML patients, decreases the number of therapy-resistant CML LSCs in a patient-derived xenograft model. Our results highlight a role for folate metabolism and purine sensing in stem cell fate decisions and leukaemogenesis.

Suggested Citation

  • Martha M. Zarou & Kevin M. Rattigan & Daniele Sarnello & Engy Shokry & Amy Dawson & Angela Ianniciello & Karen Dunn & Mhairi Copland & David Sumpton & Alexei Vazquez & G. Vignir Helgason, 2024. "Inhibition of mitochondrial folate metabolism drives differentiation through mTORC1 mediated purine sensing," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46114-0
    DOI: 10.1038/s41467-024-46114-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46114-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46114-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roland Nilsson & Mohit Jain & Nikhil Madhusudhan & Nina Gustafsson Sheppard & Laura Strittmatter & Caroline Kampf & Jenny Huang & Anna Asplund & Vamsi K. Mootha, 2014. "Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer," Nature Communications, Nature, vol. 5(1), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalia Pardo-Lorente & Anestis Gkanogiannis & Luca Cozzuto & Antoni Gañez Zapater & Lorena Espinar & Ritobrata Ghose & Jacqueline Severino & Laura García-López & Rabia Gül Aydin & Laura Martin & Mari, 2024. "Nuclear localization of MTHFD2 is required for correct mitosis progression," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Camilla Tombari & Alessandro Zannini & Rebecca Bertolio & Silvia Pedretti & Matteo Audano & Luca Triboli & Valeria Cancila & Davide Vacca & Manuel Caputo & Sara Donzelli & Ilenia Segatto & Simone Vodr, 2023. "Mutant p53 sustains serine-glycine synthesis and essential amino acids intake promoting breast cancer growth," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. André Schultz & Amina A Qutub, 2016. "Reconstruction of Tissue-Specific Metabolic Networks Using CORDA," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-33, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46114-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.