IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46091-4.html
   My bibliography  Save this article

Diverging effects of host density and richness across biological scales drive diversity-disease outcomes

Author

Listed:
  • Pieter T. J. Johnson

    (University of Colorado)

  • Tara E. Stewart Merrill

    (University of Colorado
    Florida State University)

  • Andrew D. Dean

    (University of Liverpool)

  • Andy Fenton

    (University of Liverpool)

Abstract

Understanding how biodiversity affects pathogen transmission remains an unresolved question due to the challenges in testing potential mechanisms in natural systems and how these mechanisms vary across biological scales. By quantifying transmission of an entire guild of parasites (larval trematodes) within 902 amphibian host communities, we show that the community-level drivers of infection depend critically on biological scale. At the individual host scale, increases in host richness led to fewer parasites per host for all parasite taxa, with no effect of host or predator densities. At the host community scale, however, the inhibitory effects of richness were counteracted by associated increases in total host density, leading to no overall change in parasite densities. Mechanistically, we find that while average host competence declined with increasing host richness, total community competence remained stable due to additive assembly patterns. These results help reconcile disease-diversity debates by empirically disentangling the roles of alternative ecological drivers of parasite transmission and how such effects depend on biological scale.

Suggested Citation

  • Pieter T. J. Johnson & Tara E. Stewart Merrill & Andrew D. Dean & Andy Fenton, 2024. "Diverging effects of host density and richness across biological scales drive diversity-disease outcomes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46091-4
    DOI: 10.1038/s41467-024-46091-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46091-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46091-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pieter T. J. Johnson & Daniel L. Preston & Jason T. Hoverman & Katherine L. D. Richgels, 2013. "Biodiversity decreases disease through predictable changes in host community competence," Nature, Nature, vol. 494(7436), pages 230-233, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdalena Meyer & Dominik W. Melville & Heather J. Baldwin & Kerstin Wilhelm & Evans Ewald Nkrumah & Ebenezer K. Badu & Samuel Kingsley Oppong & Nina Schwensow & Adam Stow & Peter Vallo & Victor M. Co, 2024. "Bat species assemblage predicts coronavirus prevalence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Serge Morand & Sathaporn Jittapalapong & Yupin Suputtamongkol & Mohd Tajuddin Abdullah & Tan Boon Huan, 2014. "Infectious Diseases and Their Outbreaks in Asia-Pacific: Biodiversity and Its Regulation Loss Matter," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-7, February.
    3. Kristie L. Ebi & Frances Harris & Giles B. Sioen & Chadia Wannous & Assaf Anyamba & Peng Bi & Melanie Boeckmann & Kathryn Bowen & Guéladio Cissé & Purnamita Dasgupta & Gabriel O. Dida & Alexandros Gas, 2020. "Transdisciplinary Research Priorities for Human and Planetary Health in the Context of the 2030 Agenda for Sustainable Development," IJERPH, MDPI, vol. 17(23), pages 1-25, November.
    4. Chen, Shiliang & Liu, Xiang & He, Qiang & Zhou, Shurong, 2022. "Higher-order interactions on disease transmission can reverse the dilution effect or weaken the amplification effect to unimodal pattern," Ecological Modelling, Elsevier, vol. 474(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46091-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.