IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46090-5.html
   My bibliography  Save this article

Specificity, synergy, and mechanisms of splice-modifying drugs

Author

Listed:
  • Yuma Ishigami

    (Cold Spring Harbor Laboratory)

  • Mandy S. Wong

    (Cold Spring Harbor Laboratory
    Beam Therapeutics)

  • Carlos Martí-Gómez

    (Cold Spring Harbor Laboratory)

  • Andalus Ayaz

    (Cold Spring Harbor Laboratory)

  • Mahdi Kooshkbaghi

    (Cold Spring Harbor Laboratory
    The Estée Lauder Companies)

  • Sonya M. Hanson

    (Flatiron Institute)

  • David M. McCandlish

    (Cold Spring Harbor Laboratory)

  • Adrian R. Krainer

    (Cold Spring Harbor Laboratory)

  • Justin B. Kinney

    (Cold Spring Harbor Laboratory)

Abstract

Drugs that target pre-mRNA splicing hold great therapeutic potential, but the quantitative understanding of how these drugs work is limited. Here we introduce mechanistically interpretable quantitative models for the sequence-specific and concentration-dependent behavior of splice-modifying drugs. Using massively parallel splicing assays, RNA-seq experiments, and precision dose-response curves, we obtain quantitative models for two small-molecule drugs, risdiplam and branaplam, developed for treating spinal muscular atrophy. The results quantitatively characterize the specificities of risdiplam and branaplam for 5’ splice site sequences, suggest that branaplam recognizes 5’ splice sites via two distinct interaction modes, and contradict the prevailing two-site hypothesis for risdiplam activity at SMN2 exon 7. The results also show that anomalous single-drug cooperativity, as well as multi-drug synergy, are widespread among small-molecule drugs and antisense-oligonucleotide drugs that promote exon inclusion. Our quantitative models thus clarify the mechanisms of existing treatments and provide a basis for the rational development of new therapies.

Suggested Citation

  • Yuma Ishigami & Mandy S. Wong & Carlos Martí-Gómez & Andalus Ayaz & Mahdi Kooshkbaghi & Sonya M. Hanson & David M. McCandlish & Adrian R. Krainer & Justin B. Kinney, 2024. "Specificity, synergy, and mechanisms of splice-modifying drugs," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46090-5
    DOI: 10.1038/s41467-024-46090-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46090-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46090-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masahiko Ajiro & Tomonari Awaya & Young Jin Kim & Kei Iida & Masatsugu Denawa & Nobuo Tanaka & Ryo Kurosawa & Shingo Matsushima & Saiko Shibata & Tetsunori Sakamoto & Lorenz Studer & Adrian R. Krainer, 2021. "Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Florian Krach & Judith Stemick & Tom Boerstler & Alexander Weiss & Ioannis Lingos & Stephanie Reischl & Holger Meixner & Sonja Ploetz & Michaela Farrell & Ute Hehr & Zacharias Kohl & Beate Winner & Ju, 2022. "An alternative splicing modulator decreases mutant HTT and improves the molecular fingerprint in Huntington’s disease patient neurons," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Alex Mas Monteys & Amiel A. Hundley & Paul T. Ranum & Luis Tecedor & Amy Muehlmatt & Euyn Lim & Dmitriy Lukashev & Rajeev Sivasankaran & Beverly L. Davidson, 2021. "Regulated control of gene therapies by drug-induced splicing," Nature, Nature, vol. 596(7871), pages 291-295, August.
    4. Caroline Gubser Keller & Youngah Shin & Alex Mas Monteys & Nicole Renaud & Martin Beibel & Natalia Teider & Thomas Peters & Thomas Faller & Sophie St-Cyr & Judith Knehr & Guglielmo Roma & Alejandro Re, 2022. "An orally available, brain penetrant, small molecule lowers huntingtin levels by enhancing pseudoexon inclusion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Dadi Gao & Elisabetta Morini & Monica Salani & Aram J. Krauson & Anil Chekuri & Neeraj Sharma & Ashok Ragavendran & Serkan Erdin & Emily M. Logan & Wencheng Li & Amal Dakka & Jana Narasimhan & Xin Zha, 2021. "A deep learning approach to identify gene targets of a therapeutic for human splicing disorders," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zachariah L. McLean & Dadi Gao & Kevin Correia & Jennie C. L. Roy & Shota Shibata & Iris N. Farnum & Zoe Valdepenas-Mellor & Marina Kovalenko & Manasa Rapuru & Elisabetta Morini & Jayla Ruliera & Tamm, 2024. "Splice modulators target PMS1 to reduce somatic expansion of the Huntington’s disease-associated CAG repeat," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Florian Krach & Judith Stemick & Tom Boerstler & Alexander Weiss & Ioannis Lingos & Stephanie Reischl & Holger Meixner & Sonja Ploetz & Michaela Farrell & Ute Hehr & Zacharias Kohl & Beate Winner & Ju, 2022. "An alternative splicing modulator decreases mutant HTT and improves the molecular fingerprint in Huntington’s disease patient neurons," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Jonathan P. Ling & Alexei M. Bygrave & Clayton P. Santiago & Rogger P. Carmen-Orozco & Vickie T. Trinh & Minzhong Yu & Yini Li & Ying Liu & Kyra D. Bowden & Leighton H. Duncan & Jeong Han & Kamil Tane, 2022. "Cell-specific regulation of gene expression using splicing-dependent frameshifting," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Haoshuang Wu & Li Yang & Rifang Luo & Li Li & Tiantian Zheng & Kaiyang Huang & Yumei Qin & Xia Yang & Xingdong Zhang & Yunbing Wang, 2024. "A drug-free cardiovascular stent functionalized with tailored collagen supports in-situ healing of vascular tissues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Caroline Gubser Keller & Youngah Shin & Alex Mas Monteys & Nicole Renaud & Martin Beibel & Natalia Teider & Thomas Peters & Thomas Faller & Sophie St-Cyr & Judith Knehr & Guglielmo Roma & Alejandro Re, 2022. "An orally available, brain penetrant, small molecule lowers huntingtin levels by enhancing pseudoexon inclusion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Pawel Lisowski & Selene Lickfett & Agnieszka Rybak-Wolf & Carmen Menacho & Stephanie Le & Tancredi Massimo Pentimalli & Sofia Notopoulou & Werner Dykstra & Daniel Oehler & Sandra López-Calcerrada & Ba, 2024. "Mutant huntingtin impairs neurodevelopment in human brain organoids through CHCHD2-mediated neurometabolic failure," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    7. Dylan Tua & Ruiying Liu & Wenhong Yang & Lyu Zhou & Haomin Song & Leslie Ying & Qiaoqiang Gan, 2023. "Imaging-based intelligent spectrometer on a plasmonic rainbow chip," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46090-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.