IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46079-0.html
   My bibliography  Save this article

How heat propagates in liquid 3He

Author

Listed:
  • Kamran Behnia

    ((ESPCI - CNRS - Sorbonne Université), PSL Research University)

  • Kostya Trachenko

    (Queen Mary University of London)

Abstract

In Landau’s Fermi liquid picture, transport is governed by scattering between quasi-particles. The normal liquid 3He conforms to this picture but only at very low temperature. Here, we show that the deviation from the standard behavior is concomitant with the fermion-fermion scattering time falling below the Planckian time, $$\frac{\hslash }{{k}_{{{{{{{{\rm{B}}}}}}}}}T}$$ ℏ k B T and the thermal diffusivity of this quantum liquid is bounded by a minimum set by fundamental physical constants and observed in classical liquids. This points to collective excitations (a sound mode) as carriers of heat. We propose that this mode has a wavevector of 2kF and a mean free path equal to the de Broglie thermal length. This would provide an additional conducting channel with a T 1/2 temperature dependence, matching what is observed by experiments. The experimental data from 0.007 K to 3 K can be accounted for, with a margin of 10%, if thermal conductivity is the sum of two contributions: one by quasi-particles (varying as the inverse of temperature) and another by sound (following the square root of temperature).

Suggested Citation

  • Kamran Behnia & Kostya Trachenko, 2024. "How heat propagates in liquid 3He," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46079-0
    DOI: 10.1038/s41467-024-46079-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46079-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46079-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K. Schwab & E. A. Henriksen & J. M. Worlock & M. L. Roukes, 2000. "Measurement of the quantum of thermal conductance," Nature, Nature, vol. 404(6781), pages 974-977, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangyu Guo & Masahiro Nomura & Sebastian Volz & Jose Ordonez-Miranda, 2021. "Heat Transport Driven by the Coupling of Polaritons and Phonons in a Polar Nanowire," Energies, MDPI, vol. 14(16), pages 1-11, August.
    2. Yu Pei & Li Chen & Wonjae Jeon & Zhaowei Liu & Renkun Chen, 2023. "Low-dimensional heat conduction in surface phonon polariton waveguide," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46079-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.