IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46061-w.html
   My bibliography  Save this article

Retinal photoisomerization versus counterion protonation in light and dark-adapted bacteriorhodopsin and its primary photoproduct

Author

Listed:
  • Partha Malakar

    (The Hebrew University of Jerusalem)

  • Samira Gholami

    (Università di Bologna)

  • Mohammad Aarabi

    (Università di Bologna)

  • Ivan Rivalta

    (Università di Bologna
    Laboratoire de Chimie UMR 5182)

  • Mordechai Sheves

    (The Weizmann Institute of Science)

  • Marco Garavelli

    (Università di Bologna)

  • Sanford Ruhman

    (The Hebrew University of Jerusalem)

Abstract

Discovered over 50 years ago, bacteriorhodopsin is the first recognized and most widely studied microbial retinal protein. Serving as a light-activated proton pump, it represents the archetypal ion-pumping system. Here we compare the photochemical dynamics of bacteriorhodopsin light and dark-adapted forms with that of the first metastable photocycle intermediate known as “K”. We observe that following thermal double isomerization of retinal in the dark from bio-active all-trans 15-anti to 13-cis, 15-syn, photochemistry proceeds even faster than the ~0.5 ps decay of the former, exhibiting ballistic wave packet curve crossing to the ground state. In contrast, photoexcitation of K containing a 13-cis, 15-anti chromophore leads to markedly multi-exponential excited state decay including much slower stages. QM/MM calculations, aimed to interpret these results, highlight the crucial role of protonation, showing that the classic quadrupole counterion model poorly reproduces spectral data and dynamics. Single protonation of ASP212 rectifies discrepancies and predicts triple ground state structural heterogeneity aligning with experimental observations. These findings prompt a reevaluation of counter ion protonation in bacteriorhodopsin and contribute to the broader understanding of its photochemical dynamics.

Suggested Citation

  • Partha Malakar & Samira Gholami & Mohammad Aarabi & Ivan Rivalta & Mordechai Sheves & Marco Garavelli & Sanford Ruhman, 2024. "Retinal photoisomerization versus counterion protonation in light and dark-adapted bacteriorhodopsin and its primary photoproduct," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46061-w
    DOI: 10.1038/s41467-024-46061-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46061-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46061-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dario Polli & Piero Altoè & Oliver Weingart & Katelyn M. Spillane & Cristian Manzoni & Daniele Brida & Gaia Tomasello & Giorgio Orlandi & Philipp Kukura & Richard A. Mathies & Marco Garavelli & Giulio, 2010. "Conical intersection dynamics of the primary photoisomerization event in vision," Nature, Nature, vol. 467(7314), pages 440-443, September.
    2. Karl Edman & Peter Nollert & Antoine Royant & Hassan Belrhali & Eva Pebay-Peyroula & Janos Hajdu & Richard Neutze & Ehud M. Landau, 1999. "High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle," Nature, Nature, vol. 401(6755), pages 822-826, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Batignani & Emanuele Mai & Giuseppe Fumero & Shaul Mukamel & Tullio Scopigno, 2022. "Absolute excited state molecular geometries revealed by resonance Raman signals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Alma P. Perrino & Atsushi Miyagi & Simon Scheuring, 2021. "Single molecule kinetics of bacteriorhodopsin by HS-AFM," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46061-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.