Importin 13-dependent axon diameter growth regulates conduction speeds along myelinated CNS axons
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-45908-6
Download full text from publisher
References listed on IDEAS
- Marc C. Ford & Olga Alexandrova & Lee Cossell & Annette Stange-Marten & James Sinclair & Conny Kopp-Scheinpflug & Michael Pecka & David Attwell & Benedikt Grothe, 2015. "Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing," Nature Communications, Nature, vol. 6(1), pages 1-14, November.
- Taylor Chomiak & Bin Hu, 2009. "What Is the Optimal Value of the g-Ratio for Myelinated Fibers in the Rat CNS? A Theoretical Approach," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-7, November.
- Maria A. Eichel & Vasiliki-Ilya Gargareta & Elisa D’Este & Robert Fledrich & Theresa Kungl & Tobias J. Buscham & Katja A. Lüders & Cristina Miracle & Ramona B. Jung & Ute Distler & Kathrin Kusch & Wie, 2020. "CMTM6 expressed on the adaxonal Schwann cell surface restricts axonal diameters in peripheral nerves," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mable Lam & Koji Takeo & Rafael G. Almeida & Madeline H. Cooper & Kathryn Wu & Manasi Iyer & Husniye Kantarci & J. Bradley Zuchero, 2022. "CNS myelination requires VAMP2/3-mediated membrane expansion in oligodendrocytes," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
- Meike D. Hettwer & Lena Dorfschmidt & Lara M. C. Puhlmann & Linda M. Jacob & Casey Paquola & Richard A. I. Bethlehem & Edward T. Bullmore & Simon B. Eickhoff & Sofie L. Valk, 2024. "Longitudinal variation in resilient psychosocial functioning is associated with ongoing cortical myelination and functional reorganization during adolescence," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Yide Zhang & Binglin Shen & Tong Wu & Jerry Zhao & Joseph C. Jing & Peng Wang & Kanomi Sasaki-Capela & William G. Dunphy & David Garrett & Konstantin Maslov & Weiwei Wang & Lihong V. Wang, 2022. "Ultrafast and hypersensitive phase imaging of propagating internodal current flows in myelinated axons and electromagnetic pulses in dielectrics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Alberto Lazari & Piergiorgio Salvan & Lennart Verhagen & Michiel Cottaar & Daniel Papp & Olof Jens van der Werf & Bronwyn Gavine & James Kolasinski & Matthew Webster & Charlotte J. Stagg & Matthew F. , 2022. "A macroscopic link between interhemispheric tract myelination and cortico-cortical interactions during action reprogramming," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45908-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.