IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45892-x.html
   My bibliography  Save this article

Anti-phage defence through inhibition of virion assembly

Author

Listed:
  • Pramalkumar H. Patel

    (University of Toronto)

  • Véronique L. Taylor

    (University of Toronto)

  • Chi Zhang

    (University of Toronto)

  • Landon J. Getz

    (University of Toronto)

  • Alexa D. Fitzpatrick

    (University of Toronto)

  • Alan R. Davidson

    (University of Toronto
    University of Toronto)

  • Karen L. Maxwell

    (University of Toronto)

Abstract

Bacteria have evolved diverse antiviral defence mechanisms to protect themselves against phage infection. Phages integrated into bacterial chromosomes, known as prophages, also encode defences that protect the bacterial hosts in which they reside. Here, we identify a type of anti-phage defence that interferes with the virion assembly pathway of invading phages. The protein that mediates this defence, which we call Tab (for ‘Tail assembly blocker’), is constitutively expressed from a Pseudomonas aeruginosa prophage. Tab allows the invading phage replication cycle to proceed, but blocks assembly of the phage tail, thus preventing formation of infectious virions. While the infected cell dies through the activity of the replicating phage lysis proteins, there is no release of infectious phage progeny, and the bacterial community is thereby protected from a phage epidemic. Prophages expressing Tab are not inhibited during their own lytic cycle because they express a counter-defence protein that interferes with Tab function. Thus, our work reveals an anti-phage defence that operates by blocking virion assembly, thereby both preventing formation of phage progeny and allowing destruction of the infected cell due to expression of phage lysis genes.

Suggested Citation

  • Pramalkumar H. Patel & Véronique L. Taylor & Chi Zhang & Landon J. Getz & Alexa D. Fitzpatrick & Alan R. Davidson & Karen L. Maxwell, 2024. "Anti-phage defence through inhibition of virion assembly," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45892-x
    DOI: 10.1038/s41467-024-45892-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45892-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45892-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tong Zhang & Hedvig Tamman & Kyo Coppieters ’t Wallant & Tatsuaki Kurata & Michele LeRoux & Sriram Srikant & Tetiana Brodiazhenko & Albinas Cepauskas & Ariel Talavera & Chloe Martens & Gemma C. Atkins, 2022. "Direct activation of a bacterial innate immune system by a viral capsid protein," Nature, Nature, vol. 612(7938), pages 132-140, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingchen He & Laura Miguel-Romero & Jonasz B. Patkowski & Nasser Alqurainy & Eduardo P. C. Rocha & Tiago R. D. Costa & Alfred Fillol-Salom & José R. Penadés, 2024. "Tail assembly interference is a common strategy in bacterial antiviral defenses," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingchen He & Laura Miguel-Romero & Jonasz B. Patkowski & Nasser Alqurainy & Eduardo P. C. Rocha & Tiago R. D. Costa & Alfred Fillol-Salom & José R. Penadés, 2024. "Tail assembly interference is a common strategy in bacterial antiviral defenses," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Yunxue Guo & Kaihao Tang & Brandon Sit & Jiayu Gu & Ran Chen & Xinqi Shao & Shituan Lin & Zixian Huang & Zhaolong Nie & Jianzhong Lin & Xiaoxiao Liu & Weiquan Wang & Xinyu Gao & Tianlang Liu & Fei Liu, 2024. "Control of lysogeny and antiphage defense by a prophage-encoded kinase-phosphatase module," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Jiafeng Huang & Keli Zhu & Yina Gao & Feng Ye & Zhaolong Li & Yao Ge & Songqing Liu & Jing Yang & Ang Gao, 2024. "Molecular basis of bacterial DSR2 anti-phage defense and viral immune evasion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45892-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.