IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45889-6.html
   My bibliography  Save this article

Charting cellular differentiation trajectories with Ricci flow

Author

Listed:
  • Anthony Baptista

    (The British Library
    Queen Mary University of London)

  • Ben D. MacArthur

    (The British Library
    University of Southampton
    University of Southampton)

  • Christopher R. S. Banerji

    (The British Library
    University College London)

Abstract

Complex biological processes, such as cellular differentiation, require intricate rewiring of intra-cellular signalling networks. Previous characterisations revealed a raised network entropy underlies less differentiated and malignant cell states. A connection between entropy and Ricci curvature led to applications of discrete curvatures to biological networks. However, predicting dynamic biological network rewiring remains an open problem. Here we apply Ricci curvature and Ricci flow to biological network rewiring. By investigating the relationship between network entropy and Forman-Ricci curvature, theoretically and empirically on single-cell RNA-sequencing data, we demonstrate that the two measures do not always positively correlate, as previously suggested, and provide complementary rather than interchangeable information. We next employ Ricci flow to derive network rewiring trajectories from stem cells to differentiated cells, accurately predicting true intermediate time points in gene expression time courses. In summary, we present a differential geometry toolkit for understanding dynamic network rewiring during cellular differentiation and cancer.

Suggested Citation

  • Anthony Baptista & Ben D. MacArthur & Christopher R. S. Banerji, 2024. "Charting cellular differentiation trajectories with Ricci flow," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45889-6
    DOI: 10.1038/s41467-024-45889-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45889-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45889-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher R S Banerji & Simone Severini & Carlos Caldas & Andrew E Teschendorff, 2015. "Intra-Tumour Signalling Entropy Determines Clinical Outcome in Breast and Lung Cancer," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-23, March.
    2. Andrew E. Teschendorff & Tariq Enver, 2017. "Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome," Nature Communications, Nature, vol. 8(1), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huanhuan Tan & Weixu Wang & Congjin Zhou & Yanfeng Wang & Shu Zhang & Pinglan Yang & Rui Guo & Wei Chen & Jinwen Zhang & Lan Ye & Yiqiang Cui & Ting Ni & Ke Zheng, 2023. "Single-cell RNA-seq uncovers dynamic processes orchestrated by RNA-binding protein DDX43 in chromatin remodeling during spermiogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Farshad Farshidfar & Kahn Rhrissorrakrai & Chaya Levovitz & Cong Peng & James Knight & Antonella Bacchiocchi & Juan Su & Mingzhu Yin & Mario Sznol & Stephan Ariyan & James Clune & Kelly Olino & Laxmi , 2022. "Integrative molecular and clinical profiling of acral melanoma links focal amplification of 22q11.21 to metastasis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Huiru Bai & Xiaoqin Liu & Meizhen Lin & Yuan Meng & Ruolan Tang & Yajing Guo & Nan Li & Michael F. Clarke & Shang Cai, 2024. "Progressive senescence programs induce intrinsic vulnerability to aging-related female breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45889-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.