Molecular basis of SAP05-mediated ubiquitin-independent proteasomal degradation of transcription factors
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-45521-7
Download full text from publisher
References listed on IDEAS
- Neha Rani & Annette Aichem & Gunter Schmidtke & Stefan G. Kreft & Marcus Groettrup, 2012. "FAT10 and NUB1L bind to the VWA domain of Rpn10 and Rpn1 to enable proteasome-mediated proteolysis," Nature Communications, Nature, vol. 3(1), pages 1-11, January.
- Yuanchen Dong & Shuwen Zhang & Zhaolong Wu & Xuemei Li & Wei Li Wang & Yanan Zhu & Svetla Stoilova-McPhie & Ying Lu & Daniel Finley & Youdong Mao, 2019. "Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome," Nature, Nature, vol. 565(7737), pages 49-55, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Indrajit Sahu & Sachitanand M. Mali & Prasad Sulkshane & Cong Xu & Andrey Rozenberg & Roni Morag & Manisha Priyadarsini Sahoo & Sumeet K. Singh & Zhanyu Ding & Yifan Wang & Sharleen Day & Yao Cong & O, 2021. "The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
- Ian Cooney & Heidi L. Schubert & Karina Cedeno & Olivia N. Fisher & Richard Carson & John C. Price & Christopher P. Hill & Peter S. Shen, 2024. "Visualization of the Cdc48 AAA+ ATPase protein unfolding pathway," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Ka Ying Sharon Hung & Sven Klumpe & Markus R. Eisele & Suzanne Elsasser & Geng Tian & Shuangwu Sun & Jamie A. Moroco & Tat Cheung Cheng & Tapan Joshi & Timo Seibel & Duco Dalen & Xin-Hua Feng & Ying L, 2022. "Allosteric control of Ubp6 and the proteasome via a bidirectional switch," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Nathan Jespersen & Kai Ehrenbolger & Rahel R. Winiger & Dennis Svedberg & Charles R. Vossbrinck & Jonas Barandun, 2022. "Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Yang Xu & Han Han & Ian Cooney & Yuxuan Guo & Noah G. Moran & Nathan R. Zuniga & John C. Price & Christopher P. Hill & Peter S. Shen, 2022. "Active conformation of the p97-p47 unfoldase complex," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Maximilian Fottner & Maria Weyh & Stefan Gaussmann & Dominic Schwarz & Michael Sattler & Kathrin Lang, 2021. "A modular toolbox to generate complex polymeric ubiquitin architectures using orthogonal sortase enzymes," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45521-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.