IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45142-0.html
   My bibliography  Save this article

Boosting the electron beam transmittance of field emission cathode using a self-charging gate

Author

Listed:
  • Dongyang Xiao

    (Huazhong University of Science and Technology
    Huazhong University of Science and Technology)

  • Huanhuan Du

    (Huazhong University of Science and Technology
    Huazhong University of Science and Technology)

  • Leimeng Sun

    (Huazhong University of Science and Technology)

  • Xiaochen Suo

    (Huazhong University of Science and Technology)

  • Yurong Wang

    (Huazhong University of Science and Technology)

  • Yili Zhang

    (Huazhong University of Science and Technology)

  • Shaolin Zhang

    (Huazhong University of Science and Technology)

  • Shuangyang Kuang

    (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology)

  • Fangjing Hu

    (Huazhong University of Science and Technology)

  • Liangcheng Tu

    (Huazhong University of Science and Technology
    Sun Yat-sen University (Zhuhai Campus))

  • Daren Yu

    (Lab of Plasma Propulsion, Harbin Institute of Technology (HIT))

  • Peiyi Song

    (Huazhong University of Science and Technology)

Abstract

The gate-type carbon nanotubes cathodes exhibit advantages in long-term stable emission owing to the uniformity of electrical field on the carbon nanotubes, but the gate inevitably reduces the transmittance of electron beam, posing challenges for system stabilities. In this work, we introduce electron beam focusing technique using the self-charging SiNx/Au/Si gate. The potential of SiNx is measured to be approximately −60 V quickly after the cathode turning on, the negative potential can be maintained as the emission goes on. The charged surface generates rebounding electrostatic forces on the following electrons, significantly focusing the electron beam on the center of gate hole and allowing them to pass through gate with minimal interceptions. An average transmittance of 96.17% is observed during 550 hours prototype test, the transmittance above 95% is recorded for the cathode current from 2.14 μA to 3.25 mA with the current density up to 17.54 mA cm−2.

Suggested Citation

  • Dongyang Xiao & Huanhuan Du & Leimeng Sun & Xiaochen Suo & Yurong Wang & Yili Zhang & Shaolin Zhang & Shuangyang Kuang & Fangjing Hu & Liangcheng Tu & Daren Yu & Peiyi Song, 2024. "Boosting the electron beam transmittance of field emission cathode using a self-charging gate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45142-0
    DOI: 10.1038/s41467-024-45142-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45142-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45142-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. I. Levchenko & S. Xu & G. Teel & D. Mariotti & M. L. R. Walker & M. Keidar, 2018. "Publisher Correction: Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    2. I. Levchenko & S. Xu & G. Teel & D. Mariotti & M. L. R. Walker & M. Keidar, 2018. "Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials," Nature Communications, Nature, vol. 9(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilselvi, R. & Lekshmi, G.S. & Padmanathan, N. & Selvaraj, V. & Bazaka, O. & Levchenko, I. & Bazaka, K. & Mandhakini, M., 2022. "NiFe2O4 / rGO nanocomposites produced by soft bubble assembly for energy storage and environmental remediation," Renewable Energy, Elsevier, vol. 181(C), pages 1386-1401.
    2. Duan, Buren & Zhang, Haonan & Hua, Zuohao & Wu, Lizhi & Bao, Zijing & Guo, Ning & Ye, Yinghua & Shen, Ruiqi, 2022. "Burning characteristics and combustion wave model of AP/AN-based laser-controlled solid propellant," Energy, Elsevier, vol. 253(C).
    3. Tamilselvi, R. & Ramesh, M. & Lekshmi, G.S. & Bazaka, Olha & Levchenko, Igor & Bazaka, Kateryna & Mandhakini, M., 2020. "Graphene oxide – Based supercapacitors from agricultural wastes: A step to mass production of highly efficient electrodes for electrical transportation systems," Renewable Energy, Elsevier, vol. 151(C), pages 731-739.
    4. Jiaxuan Zheng & Siyi An & Yongjun Jian, 2021. "Steric Effects on Electroosmotic Nano-Thrusters under High Zeta Potentials," Mathematics, MDPI, vol. 9(24), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45142-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.