IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45101-9.html
   My bibliography  Save this article

Programmed microalgae-gel promotes chronic wound healing in diabetes

Author

Listed:
  • Yong Kang

    (Tianjin University)

  • Lingling Xu

    (Tianjin University)

  • Jinrui Dong

    (Tianjin University)

  • Xue Yuan

    (Tianjin University)

  • Jiamin Ye

    (Tianjin University)

  • Yueyue Fan

    (Tianjin University)

  • Bing Liu

    (Rocket Force Characteristic Medical Center)

  • Julin Xie

    (The First Affiliated Hospital of Sun Yat-Sen University)

  • Xiaoyuan Ji

    (Tianjin University
    Linyi University)

Abstract

Chronic diabetic wounds are at lifelong risk of developing diabetic foot ulcers owing to severe hypoxia, excessive reactive oxygen species (ROS), a complex inflammatory microenvironment, and the potential for bacterial infection. Here we develop a programmed treatment strategy employing live Haematococcus (HEA). By modulating light intensity, HEA can be programmed to perform a variety of functions, such as antibacterial activity, oxygen supply, ROS scavenging, and immune regulation, suggesting its potential for use in programmed therapy. Under high light intensity (658 nm, 0.5 W/cm2), green HEA (GHEA) with efficient photothermal conversion mediate wound surface disinfection. By decreasing the light intensity (658 nm, 0.1 W/cm2), the photosynthetic system of GHEA can continuously produce oxygen, effectively resolving the problems of hypoxia and promoting vascular regeneration. Continuous light irradiation induces astaxanthin (AST) accumulation in HEA cells, resulting in a gradual transformation from a green to red hue (RHEA). RHEA effectively scavenges excess ROS, enhances the expression of intracellular antioxidant enzymes, and directs polarization to M2 macrophages by secreting AST vesicles via exosomes. The living HEA hydrogel can sterilize and enhance cell proliferation and migration and promote neoangiogenesis, which could improve infected diabetic wound healing in female mice.

Suggested Citation

  • Yong Kang & Lingling Xu & Jinrui Dong & Xue Yuan & Jiamin Ye & Yueyue Fan & Bing Liu & Julin Xie & Xiaoyuan Ji, 2024. "Programmed microalgae-gel promotes chronic wound healing in diabetes," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45101-9
    DOI: 10.1038/s41467-024-45101-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45101-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45101-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huan Yang & Lanqian Gong & Hongming Wang & Chungli Dong & Junlei Wang & Kai Qi & Hongfang Liu & Xingpeng Guo & Bao Yu Xia, 2020. "Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Hu & Yao Zheng & Jing Jin & Yantao Wang & Yong Peng & Jie Yin & Wei Shen & Yichao Hou & Liu Zhu & Li An & Min Lu & Pinxian Xi & Chun-Hua Yan, 2023. "Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Lei Wan & Maobin Pang & Junfa Le & Ziang Xu & Hangyu Zhou & Qin Xu & Baoguo Wang, 2022. "Oriented intergrowth of the catalyst layer in membrane electrode assembly for alkaline water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45101-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.