IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44629-6.html
   My bibliography  Save this article

Diffusion-based generative AI for exploring transition states from 2D molecular graphs

Author

Listed:
  • Seonghwan Kim

    (KAIST)

  • Jeheon Woo

    (KAIST)

  • Woo Youn Kim

    (KAIST
    KAIST)

Abstract

The exploration of transition state (TS) geometries is crucial for elucidating chemical reaction mechanisms and modeling their kinetics. Recently, machine learning (ML) models have shown remarkable performance for prediction of TS geometries. However, they require 3D conformations of reactants and products often with their appropriate orientations as input, which demands substantial efforts and computational cost. Here, we propose a generative approach based on the stochastic diffusion method, namely TSDiff, for prediction of TS geometries just from 2D molecular graphs. TSDiff outperforms the existing ML models with 3D geometries in terms of both accuracy and efficiency. Moreover, it enables to sample various TS conformations, because it learns the distribution of TS geometries for diverse reactions in training. Thus, TSDiff finds more favorable reaction pathways with lower barrier heights than those in the reference database. These results demonstrate that TSDiff shows promising potential for an efficient and reliable TS exploration.

Suggested Citation

  • Seonghwan Kim & Jeheon Woo & Woo Youn Kim, 2024. "Diffusion-based generative AI for exploring transition states from 2D molecular graphs," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44629-6
    DOI: 10.1038/s41467-023-44629-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44629-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44629-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sunghwan Choi, 2023. "Prediction of transition state structures of gas-phase chemical reactions via machine learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Dominik Lemm & Guido Falk von Rudorff & O. Anatole von Lilienfeld, 2021. "Machine learning based energy-free structure predictions of molecules, transition states, and solids," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric C.-Y. Yuan & Anup Kumar & Xingyi Guan & Eric D. Hermes & Andrew S. Rosen & Judit Zádor & Teresa Head-Gordon & Samuel M. Blau, 2024. "Analytical ab initio hessian from a deep learning potential for transition state optimization," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niklas W. A. Gebauer & Michael Gastegger & Stefaan S. P. Hessmann & Klaus-Robert Müller & Kristof T. Schütt, 2022. "Inverse design of 3d molecular structures with conditional generative neural networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Kenneth Atz & Leandro Cotos & Clemens Isert & Maria Håkansson & Dorota Focht & Mattis Hilleke & David F. Nippa & Michael Iff & Jann Ledergerber & Carl C. G. Schiebroek & Valentina Romeo & Jan A. Hiss , 2024. "Prospective de novo drug design with deep interactome learning," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44629-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.