IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44501-7.html
   My bibliography  Save this article

Direct translation of incoming retroviral genomes

Author

Listed:
  • Julia Köppke

    (Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18))

  • Luise-Elektra Keller

    (Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18)
    Goethe University Frankfurt)

  • Michelle Stuck

    (Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18)
    Heidelberg University)

  • Nicolas D. Arnow

    (Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18))

  • Norbert Bannert

    (Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18))

  • Joerg Doellinger

    (Proteomics and Spectroscopy (ZBS6))

  • Oya Cingöz

    (Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18))

Abstract

Viruses that carry a positive-sense, single-stranded (+ssRNA) RNA translate their genomes soon after entering the host cell to produce viral proteins, with the exception of retroviruses. A distinguishing feature of retroviruses is reverse transcription, where the +ssRNA genome serves as a template to synthesize a double-stranded DNA copy that subsequently integrates into the host genome. As retroviral RNAs are produced by the host cell transcriptional machinery and are largely indistinguishable from cellular mRNAs, we investigated the potential of incoming retroviral genomes to directly express proteins. Here we show through multiple, complementary methods that retroviral genomes are translated after entry. Our findings challenge the notion that retroviruses require reverse transcription to produce viral proteins. Synthesis of retroviral proteins in the absence of productive infection has significant implications for basic retrovirology, immune responses and gene therapy applications.

Suggested Citation

  • Julia Köppke & Luise-Elektra Keller & Michelle Stuck & Nicolas D. Arnow & Norbert Bannert & Joerg Doellinger & Oya Cingöz, 2024. "Direct translation of incoming retroviral genomes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44501-7
    DOI: 10.1038/s41467-023-44501-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44501-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44501-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph M. Watts & Kristen K. Dang & Robert J. Gorelick & Christopher W. Leonard & Julian W. Bess Jr & Ronald Swanstrom & Christina L. Burch & Kevin M. Weeks, 2009. "Architecture and secondary structure of an entire HIV-1 RNA genome," Nature, Nature, vol. 460(7256), pages 711-716, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerricho Tipo & Keerthi Gottipati & Michael Slaton & Giovanni Gonzalez-Gutierrez & Kyung H. Choi, 2024. "Structure of HIV-1 RRE stem-loop II identifies two conformational states of the high-affinity Rev binding site," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Hanjing Yang & Kyumin Kim & Shuxing Li & Josue Pacheco & Xiaojiang S. Chen, 2022. "Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44501-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.