IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44238-3.html
   My bibliography  Save this article

Oligodendrocyte calcium signaling promotes actin-dependent myelin sheath extension

Author

Listed:
  • Manasi Iyer

    (Stanford University School of Medicine)

  • Husniye Kantarci

    (Stanford University School of Medicine)

  • Madeline H. Cooper

    (Stanford University School of Medicine)

  • Nicholas Ambiel

    (Stanford University School of Medicine)

  • Sammy Weiser Novak

    (Salk Institute for Biological Studies)

  • Leonardo R. Andrade

    (Salk Institute for Biological Studies)

  • Mable Lam

    (Stanford University School of Medicine)

  • Graham Jones

    (Stanford University School of Medicine)

  • Alexandra E. Münch

    (Stanford University School of Medicine)

  • Xinzhu Yu

    (University of Illinois at Urbana-
    University of California, Los Angeles)

  • Baljit S. Khakh

    (University of California, Los Angeles)

  • Uri Manor

    (Salk Institute for Biological Studies
    University of California, San Diego)

  • J. Bradley Zuchero

    (Stanford University School of Medicine)

Abstract

Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length are thought to precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation remains incompletely understood. Here, we use genetic tools to attenuate oligodendrocyte calcium signaling during myelination in the developing mouse CNS. Surprisingly, genetic calcium attenuation does not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation causes myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduces actin filaments in oligodendrocytes, and an intact actin cytoskeleton is necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a cellular mechanism required for accurate CNS myelin formation and may provide mechanistic insight into how oligodendrocytes respond to neuronal activity to sculpt and refine myelin sheaths.

Suggested Citation

  • Manasi Iyer & Husniye Kantarci & Madeline H. Cooper & Nicholas Ambiel & Sammy Weiser Novak & Leonardo R. Andrade & Mable Lam & Graham Jones & Alexandra E. Münch & Xinzhu Yu & Baljit S. Khakh & Uri Man, 2024. "Oligodendrocyte calcium signaling promotes actin-dependent myelin sheath extension," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44238-3
    DOI: 10.1038/s41467-023-44238-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44238-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44238-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ricardo E. Dolmetsch & Richard S. Lewis & Christopher C. Goodnow & James I. Healy, 1997. "Differential activation of transcription factors induced by Ca2+ response amplitude and duration," Nature, Nature, vol. 388(6639), pages 308-308, July.
    2. Mable Lam & Koji Takeo & Rafael G. Almeida & Madeline H. Cooper & Kathryn Wu & Manasi Iyer & Husniye Kantarci & J. Bradley Zuchero, 2022. "CNS myelination requires VAMP2/3-mediated membrane expansion in oligodendrocytes," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Ricardo E. Dolmetsch & Richard S. Lewis & Christopher C. Goodnow & James I. Healy, 1997. "Differential activation of transcription factors induced by Ca2+ response amplitude and duration," Nature, Nature, vol. 386(6627), pages 855-858, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianping Wu & Georg Kislinger & Jerome Duschek & Ayşe Damla Durmaz & Benedikt Wefers & Ruoqing Feng & Karsten Nalbach & Wolfgang Wurst & Christian Behrends & Martina Schifferer & Mikael Simons, 2024. "Nonvesicular lipid transfer drives myelin growth in the central nervous system," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason W Locasale & Arup K Chakraborty, 2008. "Regulation of Signal Duration and the Statistical Dynamics of Kinase Activation by Scaffold Proteins," PLOS Computational Biology, Public Library of Science, vol. 4(6), pages 1-12, June.
    2. Andreja Jovic & Bryan Howell & Michelle Cote & Susan M Wade & Khamir Mehta & Atsushi Miyawaki & Richard R Neubig & Jennifer J Linderman & Shuichi Takayama, 2010. "Phase-Locked Signals Elucidate Circuit Architecture of an Oscillatory Pathway," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-8, December.
    3. Agne Tilūnaitė & Wayne Croft & Noah Russell & Tomas C Bellamy & Rüdiger Thul, 2017. "A Bayesian approach to modelling heterogeneous calcium responses in cell populations," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-25, October.
    4. Hyung Chul Lee & Nidia M. M. Oliveira & Cato Hastings & Peter Baillie-Benson & Adam A. Moverley & Hui-Chun Lu & Yi Zheng & Elise L. Wilby & Timothy T. Weil & Karen M. Page & Jianping Fu & Naomi Moris , 2024. "Regulation of long-range BMP gradients and embryonic polarity by propagation of local calcium-firing activity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Jianping Wu & Georg Kislinger & Jerome Duschek & Ayşe Damla Durmaz & Benedikt Wefers & Ruoqing Feng & Karsten Nalbach & Wolfgang Wurst & Christian Behrends & Martina Schifferer & Mikael Simons, 2024. "Nonvesicular lipid transfer drives myelin growth in the central nervous system," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44238-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.