IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44255-2.html
   My bibliography  Save this article

Proteomics-driven noninvasive screening of circulating serum protein panels for the early diagnosis of hepatocellular carcinoma

Author

Listed:
  • Xiaohua Xing

    (Mengchao Hepatobiliary Hospital of Fujian Medical University)

  • Linsheng Cai

    (Mengchao Hepatobiliary Hospital of Fujian Medical University
    Clinical Oncology School of Fujian Medical University)

  • Jiahe Ouyang

    (Mengchao Hepatobiliary Hospital of Fujian Medical University)

  • Fei Wang

    (Mengchao Hepatobiliary Hospital of Fujian Medical University)

  • Zongman Li

    (Mengchao Hepatobiliary Hospital of Fujian Medical University)

  • Mingxin Liu

    (Mengchao Hepatobiliary Hospital of Fujian Medical University)

  • Yingchao Wang

    (Mengchao Hepatobiliary Hospital of Fujian Medical University)

  • Yang Zhou

    (Mengchao Hepatobiliary Hospital of Fujian Medical University)

  • En Hu

    (Mengchao Hepatobiliary Hospital of Fujian Medical University)

  • Changli Huang

    (Clinical Oncology School of Fujian Medical University)

  • Liming Wu

    (Mengchao Hepatobiliary Hospital of Fujian Medical University
    Zhejiang University)

  • Jingfeng Liu

    (Clinical Oncology School of Fujian Medical University)

  • Xiaolong Liu

    (Mengchao Hepatobiliary Hospital of Fujian Medical University)

Abstract

Early diagnosis of hepatocellular carcinoma (HCC) lacks highly sensitive and specific protein biomarkers. Here, we describe a staged mass spectrometry (MS)-based discovery-verification-validation proteomics workflow to explore serum proteomic biomarkers for HCC early diagnosis in 1002 individuals. Machine learning model determined as P4 panel (HABP2, CD163, AFP and PIVKA-II) clearly distinguish HCC from liver cirrhosis (LC, AUC 0.979, sensitivity 0.925, specificity 0.915) and healthy individuals (HC, AUC 0.992, sensitivity 0.975, specificity 1.000) in an independent validation cohort, outperforming existing clinical prediction strategies. Furthermore, the P4 panel can accurately predict LC to HCC conversion (AUC 0.890, sensitivity 0.909, specificity 0.877) with predicting HCC at a median of 11.4 months prior to imaging in prospective external validation cohorts (No.: Keshen 2018_005_02 and NCT03588442). These results suggest that proteomics-driven serum biomarker discovery provides a valuable reference for the liquid biopsy, and has great potential to improve early diagnosis of HCC.

Suggested Citation

  • Xiaohua Xing & Linsheng Cai & Jiahe Ouyang & Fei Wang & Zongman Li & Mingxin Liu & Yingchao Wang & Yang Zhou & En Hu & Changli Huang & Liming Wu & Jingfeng Liu & Xiaolong Liu, 2023. "Proteomics-driven noninvasive screening of circulating serum protein panels for the early diagnosis of hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44255-2
    DOI: 10.1038/s41467-023-44255-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44255-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44255-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yulin Sun & Zhengguang Guo & Xiaoyan Liu & Lijun Yang & Zongpan Jing & Meng Cai & Zhaoxu Zheng & Chen Shao & Yefan Zhang & Haidan Sun & Li Wang & Minjie Wang & Jun Li & Lusong Tian & Yue Han & Shuangm, 2022. "Noninvasive urinary protein signatures associated with colorectal cancer diagnosis and metastasis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Lin Huang & Lin Wang & Xiaomeng Hu & Sen Chen & Yunwen Tao & Haiyang Su & Jing Yang & Wei Xu & Vadanasundari Vedarethinam & Shu Wu & Bin Liu & Xinze Wan & Jiatao Lou & Qian Wang & Kun Qian, 2020. "Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bangfeng Wang & Yiwei Li & Mengfan Zhou & Yulong Han & Mingyu Zhang & Zhaolong Gao & Zetai Liu & Peng Chen & Wei Du & Xingcai Zhang & Xiaojun Feng & Bi-Feng Liu, 2023. "Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Yao Yao & Xueping Wang & Jian Guan & Chuanbo Xie & Hui Zhang & Jing Yang & Yao Luo & Lili Chen & Mingyue Zhao & Bitao Huo & Tiantian Yu & Wenhua Lu & Qiao Liu & Hongli Du & Yuying Liu & Peng Huang & T, 2023. "Metabolomic differentiation of benign vs malignant pulmonary nodules with high specificity via high-resolution mass spectrometry analysis of patient sera," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44255-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.