IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44075-4.html
   My bibliography  Save this article

Cell geometry regulates tissue fracture

Author

Listed:
  • Amir J. Bidhendi

    (McGill University
    EERS Global Technologies)

  • Olivier Lampron

    (École Polytechnique de Montréal)

  • Frédérick P. Gosselin

    (École Polytechnique de Montréal)

  • Anja Geitmann

    (McGill University)

Abstract

In vascular plants, the epidermal surfaces of leaves and flower petals often display cells with wavy geometries forming intricate jigsaw puzzle patterns. The prevalence and diversity of these complex epidermal patterns, originating from simple polyhedral progenitor cells, suggest adaptive significance. However, despite multiple efforts to explain the evolutionary drivers behind these geometrical features, compelling validation remains elusive. Employing a multidisciplinary approach that integrates microscopic and macroscopic fracture experiments with computational fracture mechanics, we demonstrate that wavy epidermal cells toughen the plants’ protective skin. Through a multi-scale framework, we demonstrate that this energy-efficient patterning mechanism is universally applicable for toughening biological and synthetic materials. Our findings reveal a tunable structural-mechanical strategy employed in the microscale design of plants to protect them from deleterious surface fissures while facilitating and strategically directing beneficial ones. These findings hold implications for targeted plant breeding aimed at enhancing resilience in fluctuating environmental conditions. From an engineering perspective, our work highlights the sophisticated design principles the plant kingdom offers to inspire metamaterials.

Suggested Citation

  • Amir J. Bidhendi & Olivier Lampron & Frédérick P. Gosselin & Anja Geitmann, 2023. "Cell geometry regulates tissue fracture," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44075-4
    DOI: 10.1038/s41467-023-44075-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44075-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44075-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen Yang & Vincent R. Sherman & Bernd Gludovatz & Eric Schaible & Polite Stewart & Robert O. Ritchie & Marc A. Meyers, 2015. "On the tear resistance of skin," Nature Communications, Nature, vol. 6(1), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Shuang & Ahn, Chihyung & Wingert, Matthew C. & Leung, David & Cai, Shengqiang & Chen, Renkun, 2016. "Bio-inspired effective and regenerable building cooling using tough hydrogels," Applied Energy, Elsevier, vol. 168(C), pages 332-339.
    2. Jiqiang Wang & Baohu Wu & Peng Wei & Shengtong Sun & Peiyi Wu, 2022. "Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44075-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.