Author
Listed:
- Guanghu Tong
(Scripps Research)
- Samantha Griffin
(Corteva Agriscience)
- Avery Sader
(Corteva Agriscience)
- Anna B. Crowell
(Department of Chemistry and Biochemistry, Oberlin College)
- Ken Beavers
(Corteva Agriscience)
- Jerry Watson
(Corteva Agriscience)
- Zachary Buchan
(Corteva Agriscience)
- Shuming Chen
(Department of Chemistry and Biochemistry, Oberlin College)
- Ryan A. Shenvi
(Scripps Research)
Abstract
Minor changes to complex structures can exert major influences on synthesis strategy and functional properties. Here we explore two parallel series of picrotoxinin (PXN, 1) analogs and identify leads with selectivity between mammalian and insect ion channels. These are the first SAR studies of PXN despite its >100-year history and are made possible by advances in total synthesis. We observe a remarkable stabilizing effect of a C5 methyl, which completely blocks C15 alcoholysis via destabilization of an intermediate twist-boat conformer; suppression of this secondary hydrolysis pathway increases half-life in plasma. C5 methylation also decreases potency against vertebrate ion channels (γ-Aminobutyric acid type A (GABAA) receptors) but maintains or increases antagonism of homologous invertebrate GABA-gated chloride channels (resistance to dieldrin (RDL) receptors). Optimal 5MePXN analogs appear to change the PXN binding pose within GABAARs by disruption of a hydrogen bond network. These discoveries were made possible by the lower synthetic burden of 5MePXN (2) and were illuminated by the parallel analog series, which allowed characterization of the role of the synthetically simplifying C5 methyl in channel selectivity. These are the first SAR studies to identify changes to PXN that increase the GABAA-RDL selectivity index.
Suggested Citation
Guanghu Tong & Samantha Griffin & Avery Sader & Anna B. Crowell & Ken Beavers & Jerry Watson & Zachary Buchan & Shuming Chen & Ryan A. Shenvi, 2023.
"C5 methylation confers accessibility, stability and selectivity to picrotoxinin,"
Nature Communications, Nature, vol. 14(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44030-3
DOI: 10.1038/s41467-023-44030-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44030-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.