IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43664-7.html
   My bibliography  Save this article

A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation

Author

Listed:
  • Hongcheng Xu

    (Xidian University)

  • Weihao Zheng

    (Xidian University)

  • Yang Zhang

    (School of Biomedical Engineering, Air Force Medical University)

  • Daqing Zhao

    (The Second Affiliated Hospital of Air Force Medical University)

  • Lu Wang

    (The Second Affiliated Hospital of Air Force Medical University)

  • Yunlong Zhao

    (Xiamen University)

  • Weidong Wang

    (Xidian University)

  • Yangbo Yuan

    (Xidian University)

  • Ji Zhang

    (Xidian University)

  • Zimin Huo

    (Xidian University)

  • Yuejiao Wang

    (Tsinghua University)

  • Ningjuan Zhao

    (Xidian University)

  • Yuxin Qin

    (Xidian University)

  • Ke Liu

    (Xidian University)

  • Ruida Xi

    (Xidian University)

  • Gang Chen

    (Xidian University)

  • Haiyan Zhang

    (Xidian University)

  • Chu Tang

    (Ministry of Education, School of Life Science and Technology, Xidian University)

  • Junyu Yan

    (Xidian University)

  • Qi Ge

    (Southern University of Science and Technology)

  • Huanyu Cheng

    (The Pennsylvania State University)

  • Yang Lu

    (The University of Hong Kong, Pokfulam)

  • Libo Gao

    (Xiamen University)

Abstract

Post-surgical treatments of the human throat often require continuous monitoring of diverse vital and muscle activities. However, wireless, continuous monitoring and analysis of these activities directly from the throat skin have not been developed. Here, we report the design and validation of a fully integrated standalone stretchable device platform that provides wireless measurements and machine learning-based analysis of diverse vibrations and muscle electrical activities from the throat. We demonstrate that the modified composite hydrogel with low contact impedance and reduced adhesion provides high-quality long-term monitoring of local muscle electrical signals. We show that the integrated triaxial broad-band accelerometer also measures large body movements and subtle physiological activities/vibrations. We find that the combined data processed by a 2D-like sequential feature extractor with fully connected neurons facilitates the classification of various motion/speech features at a high accuracy of over 90%, which adapts to the data with noise from motion artifacts or the data from new human subjects. The resulting standalone stretchable device with wireless monitoring and machine learning-based processing capabilities paves the way to design and apply wearable skin-interfaced systems for the remote monitoring and treatment evaluation of various diseases.

Suggested Citation

  • Hongcheng Xu & Weihao Zheng & Yang Zhang & Daqing Zhao & Lu Wang & Yunlong Zhao & Weidong Wang & Yangbo Yuan & Ji Zhang & Zimin Huo & Yuejiao Wang & Ningjuan Zhao & Yuxin Qin & Ke Liu & Ruida Xi & Gan, 2023. "A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43664-7
    DOI: 10.1038/s41467-023-43664-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43664-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43664-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhouyue Lei & Peiyi Wu, 2018. "A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changyong Cai & Shuanggen Wu & Yunfei Zhang & Fenfang Li & Zhijian Tan & Shengyi Dong, 2024. "Bulk transparent supramolecular glass enabled by host–guest molecular recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Rasool Nasseri & Negin Bouzari & Junting Huang & Hossein Golzar & Sarah Jankhani & Xiaowu (Shirley) Tang & Tizazu H. Mekonnen & Amirreza Aghakhani & Hamed Shahsavan, 2023. "Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Sijia Xu & Jie-Xiang Yu & Hongshuang Guo & Shu Tian & You Long & Jing Yang & Lei Zhang, 2023. "Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Feng Wu & Yusheng Ren & Wenyan Lv & Xiaobing Liu & Xinyue Wang & Chuhan Wang & Zhenping Cao & Jinyao Liu & Jie Wei & Yan Pang, 2024. "Generating dual structurally and functionally skin-mimicking hydrogels by crosslinking cell-membrane compartments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Jiafu Shen & Xi Huang & Yu Dai & Xiaojin Zhang & Fan Xia, 2024. "N-type and P-type series integrated hydrogel thermoelectric cells for low-grade heat harvesting," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Sanwei Hao & Qingjin Fu & Lei Meng & Feng Xu & Jun Yang, 2022. "A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43664-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.