IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43559-7.html
   My bibliography  Save this article

Mechanistic manifold in a hemoprotein-catalyzed cyclopropanation reaction with diazoketone

Author

Listed:
  • Donggeon Nam

    (University of Rochester)

  • John-Paul Bacik

    (Cornell University)

  • Rahul L. Khade

    (Stevens Institute of Technology)

  • Maria Camila Aguilera

    (University of Rochester)

  • Yang Wei

    (Stevens Institute of Technology)

  • Juan D. Villada

    (University of Rochester
    University of Texas at Dallas)

  • Michael L. Neidig

    (University of Oxford)

  • Yong Zhang

    (Stevens Institute of Technology)

  • Nozomi Ando

    (Cornell University)

  • Rudi Fasan

    (University of Rochester
    University of Texas at Dallas)

Abstract

Hemoproteins have recently emerged as promising biocatalysts for new-to-nature carbene transfer reactions. However, mechanistic understanding of the interplay between productive and unproductive pathways in these processes is limited. Using spectroscopic, structural, and computational methods, we investigate the mechanism of a myoglobin-catalyzed cyclopropanation reaction with diazoketones. These studies shed light on the nature and kinetics of key catalytic steps in this reaction, including the formation of an early heme-bound diazo complex intermediate, the rate-determining nature of carbene formation, and the cyclopropanation mechanism. Our analyses further reveal the existence of a complex mechanistic manifold for this reaction that includes a competing pathway resulting in the formation of an N-bound carbene adduct of the heme cofactor, which was isolated and characterized by X-ray crystallography, UV-Vis, and Mössbauer spectroscopy. This species can regenerate the active biocatalyst, constituting a non-productive, yet non-destructive detour from the main catalytic cycle. These findings offer a valuable framework for both mechanistic analysis and design of hemoprotein-catalyzed carbene transfer reactions.

Suggested Citation

  • Donggeon Nam & John-Paul Bacik & Rahul L. Khade & Maria Camila Aguilera & Yang Wei & Juan D. Villada & Michael L. Neidig & Yong Zhang & Nozomi Ando & Rudi Fasan, 2023. "Mechanistic manifold in a hemoprotein-catalyzed cyclopropanation reaction with diazoketone," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43559-7
    DOI: 10.1038/s41467-023-43559-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43559-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43559-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruijie K. Zhang & Kai Chen & Xiongyi Huang & Lena Wohlschlager & Hans Renata & Frances H. Arnold, 2019. "Enzymatic assembly of carbon–carbon bonds via iron-catalysed sp3 C–H functionalization," Nature, Nature, vol. 565(7737), pages 67-72, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roman A. Novikov & Denis D. Borisov & Dmitry A. Denisov & Maxim A. Novikov & Konstantin V. Potapov & Yaroslav V. Tkachev & Yury V. Tomilov, 2024. "The concept of Gallium-controlled double C–H functionalization of aliphatic CH2-groups driven by Vinyl carbocations," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhejun Jiang & Hao Huang & Chenxu Lu & Lianrong Zhou & Shengzhe Pan & Junjie Qiang & Menghang Shi & Zhengjun Ye & Peifen Lu & Hongcheng Ni & Wenbin Zhang & Jian Wu, 2024. "Ultrafast photoinduced C-H bond formation from two small inorganic molecules," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43559-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.