IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43359-z.html
   My bibliography  Save this article

Serine peptidase Vpr forms enzymatically active fibrils outside Bacillus bacteria revealed by cryo-EM

Author

Listed:
  • Yijia Cheng

    (Shanghai Jiao Tong University)

  • Jianting Han

    (Shanghai Jiao Tong University)

  • Meinai Song

    (Shanghai Jiao Tong University)

  • Shuqin Zhang

    (Shanghai Jiao Tong University)

  • Qin Cao

    (Shanghai Jiao Tong University)

Abstract

Bacteria develop a variety of extracellular fibrous structures crucial for their survival, such as flagella and pili. In this study, we use cryo-EM to identify protein fibrils surrounding lab-cultured Bacillus amyloiquefaciens and discover an unreported fibril species in addition to the flagellar fibrils. These previously unknown fibrils are composed of Vpr, an extracellular serine peptidase. We find that Vpr assembles into fibrils in an enzymatically active form, potentially representing a strategy of enriching Vpr activities around bacterial cells. Vpr fibrils are also observed under other culture conditions and around other Bacillus bacteria, such as Bacillus subtilis, which may suggest a general mechanism across all Bacillus bacterial groups. Taken together, our study reveals fibrils outside the bacterial cell and sheds light on the physiological role of these extracellular fibrils.

Suggested Citation

  • Yijia Cheng & Jianting Han & Meinai Song & Shuqin Zhang & Qin Cao, 2023. "Serine peptidase Vpr forms enzymatically active fibrils outside Bacillus bacteria revealed by cryo-EM," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43359-z
    DOI: 10.1038/s41467-023-43359-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43359-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43359-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi Xiao Jiang & Qin Cao & Michael R. Sawaya & Romany Abskharon & Peng Ge & Michael DeTure & Dennis W. Dickson & Janine Y. Fu & Rachel R. Ogorzalek Loo & Joseph A. Loo & David S. Eisenberg, 2022. "Amyloid fibrils in FTLD-TDP are composed of TMEM106B and not TDP-43," Nature, Nature, vol. 605(7909), pages 304-309, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yijia Cheng & Mark A. B. Kreutzberger & Jianting Han & Edward H. Egelman & Qin Cao, 2024. "Molecular architecture of the assembly of Bacillus spore coat protein GerQ revealed by cryo-EM," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yijia Cheng & Mark A. B. Kreutzberger & Jianting Han & Edward H. Egelman & Qin Cao, 2024. "Molecular architecture of the assembly of Bacillus spore coat protein GerQ revealed by cryo-EM," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Binh An Nguyen & Virender Singh & Shumaila Afrin & Anna Yakubovska & Lanie Wang & Yasmin Ahmed & Rose Pedretti & Maria del Carmen Fernandez-Ramirez & Preeti Singh & Maja Pękała & Luis O. Cabrera Herna, 2024. "Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43359-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.