IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43355-3.html
   My bibliography  Save this article

Seismic arrival-time picking on distributed acoustic sensing data using semi-supervised learning

Author

Listed:
  • Weiqiang Zhu

    (California Institute of Technology
    University of California)

  • Ettore Biondi

    (California Institute of Technology)

  • Jiaxuan Li

    (California Institute of Technology)

  • Jiuxun Yin

    (California Institute of Technology)

  • Zachary E. Ross

    (California Institute of Technology)

  • Zhongwen Zhan

    (California Institute of Technology)

Abstract

Distributed Acoustic Sensing (DAS) is an emerging technology for earthquake monitoring and subsurface imaging. However, its distinct characteristics, such as unknown ground coupling and high noise level, pose challenges to signal processing. Existing machine learning models optimized for conventional seismic data struggle with DAS data due to its ultra-dense spatial sampling and limited manual labels. We introduce a semi-supervised learning approach to address the phase-picking task of DAS data. We use the pre-trained PhaseNet model to generate noisy labels of P/S arrivals in DAS data and apply the Gaussian mixture model phase association (GaMMA) method to refine these noisy labels and build training datasets. We develop PhaseNet-DAS, a deep learning model designed to process 2D spatio-temporal DAS data to achieve accurate phase picking and efficient earthquake detection. Our study demonstrates a method to develop deep learning models for DAS data, unlocking the potential of integrating DAS in enhancing earthquake monitoring.

Suggested Citation

  • Weiqiang Zhu & Ettore Biondi & Jiaxuan Li & Jiuxun Yin & Zachary E. Ross & Zhongwen Zhan, 2023. "Seismic arrival-time picking on distributed acoustic sensing data using semi-supervised learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43355-3
    DOI: 10.1038/s41467-023-43355-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43355-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43355-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiaxuan Li & Taeho Kim & Nadia Lapusta & Ettore Biondi & Zhongwen Zhan, 2023. "The break of earthquake asperities imaged by distributed acoustic sensing," Nature, Nature, vol. 620(7975), pages 800-806, August.
    2. Léonard Seydoux & Randall Balestriero & Piero Poli & Maarten de Hoop & Michel Campillo & Richard Baraniuk, 2020. "Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Wenhuan Kuang & Congcong Yuan & Jie Zhang, 2021. "Real-time determination of earthquake focal mechanism via deep learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. S. Mostafa Mousavi & William L. Ellsworth & Weiqiang Zhu & Lindsay Y. Chuang & Gregory C. Beroza, 2020. "Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    5. David R. Shelly & Gregory C. Beroza & Satoshi Ide, 2007. "Non-volcanic tremor and low-frequency earthquake swarms," Nature, Nature, vol. 446(7133), pages 305-307, March.
    6. Ethan F. Williams & María R. Fernández-Ruiz & Regina Magalhaes & Roel Vanthillo & Zhongwen Zhan & Miguel González-Herráez & Hugo F. Martins, 2019. "Distributed sensing of microseisms and teleseisms with submarine dark fibers," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    7. Jiaxuan Li & Weiqiang Zhu & Ettore Biondi & Zhongwen Zhan, 2023. "Earthquake focal mechanisms with distributed acoustic sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corentin Caudron & Yosuke Aoki & Thomas Lecocq & Raphael Plaen & Jean Soubestre & Aurelien Mordret & Leonard Seydoux & Toshiko Terakawa, 2022. "Hidden pressurized fluids prior to the 2014 phreatic eruption at Mt Ontake," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Paola Vannucchi & Alexander Clarke & Albert Montserrat & Audrey Ougier-Simonin & Luca Aldega & Jason P. Morgan, 2022. "A strength inversion origin for non-volcanic tremor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Jiaxuan Li & Weiqiang Zhu & Ettore Biondi & Zhongwen Zhan, 2023. "Earthquake focal mechanisms with distributed acoustic sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Hongyu Yu & Rebecca M. Harrington & Honn Kao & Yajing Liu & Bei Wang, 2021. "Fluid-injection-induced earthquakes characterized by hybrid-frequency waveforms manifest the transition from aseismic to seismic slip," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Shasha Song & Isaac R. Santos & Huaming Yu & Faming Wang & William C. Burnett & Thomas S. Bianchi & Junyu Dong & Ergang Lian & Bin Zhao & Lawrence Mayer & Qingzhen Yao & Zhigang Yu & Bochao Xu, 2022. "A global assessment of the mixed layer in coastal sediments and implications for carbon storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Daniel Rathmaier & Fawz Naim & Andikan Charles William & Dwaipayan Chakraborty & Christopher Conwell & Matthias Imhof & Gordon M. Holmes & Luis E. Zerpa, 2024. "A Reservoir Modeling Study for the Evaluation of CO 2 Storage Upscaling at the Decatur Site in the Eastern Illinois Basin," Energies, MDPI, vol. 17(5), pages 1-18, March.
    7. Alberto Ardid & David Dempsey & Corentin Caudron & Shane Cronin, 2022. "Seismic precursors to the Whakaari 2019 phreatic eruption are transferable to other eruptions and volcanoes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Hui Huang & Jessica C. Hawthorne, 2022. "Linking the scaling of tremor and slow slip near Parkfield, CA," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Simone Cesca & Daniel Stich & Francesco Grigoli & Alessandro Vuan & José Ángel López-Comino & Peter Niemz & Estefanía Blanch & Torsten Dahm & William L. Ellsworth, 2022. "Reply to: Multiple induced seismicity mechanisms at Castor underground gas storage illustrate the need for thorough monitoring," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    10. Ryosuke Oyanagi & Atsushi Okamoto, 2024. "Subducted carbon weakens the forearc mantle wedge in a warm subduction zone," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Yohann Faure & Elsa Bayart, 2024. "Experimental evidence of seismic ruptures initiated by aseismic slip," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Jianmin Lin & Sunke Fang & Runjing He & Qunshu Tang & Fengzhong Qu & Baoshan Wang & Wen Xu, 2024. "Monitoring ocean currents during the passage of Typhoon Muifa using optical-fiber distributed acoustic sensing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Weijia Sun & Hrvoje Tkalčić, 2022. "Repetitive marsquakes in Martian upper mantle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43355-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.