IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42720-6.html
   My bibliography  Save this article

Efficient photocatalytic production of hydrogen peroxide using dispersible and photoactive porous polymers

Author

Listed:
  • Shengdong Wang

    (Sichuan University
    South China University of Technology)

  • Zhipeng Xie

    (Fuzhou University)

  • Da Zhu

    (Tsinghua University)

  • Shuai Fu

    (Max Planck Institute for Polymer Research, Ackermannweg 10)

  • Yishi Wu

    (Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University)

  • Hongling Yu

    (Fuzhou University)

  • Chuangye Lu

    (South China University of Technology)

  • Panke Zhou

    (Fuzhou University)

  • Mischa Bonn

    (Max Planck Institute for Polymer Research, Ackermannweg 10)

  • Hai I. Wang

    (Max Planck Institute for Polymer Research, Ackermannweg 10
    Utrecht University)

  • Qing Liao

    (Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University)

  • Hong Xu

    (Tsinghua University)

  • Xiong Chen

    (Fuzhou University)

  • Cheng Gu

    (Sichuan University)

Abstract

Developing efficient artificial photocatalysts for the biomimetic photocatalytic production of molecular materials, including medicines and clean energy carriers, remains a fundamentally and technologically essential challenge. Hydrogen peroxide is widely used in chemical synthesis, medical disinfection, and clean energy. However, the current industrial production, predominantly by anthraquinone oxidation, suffers from hefty energy penalties and toxic byproducts. Herein, we report the efficient photocatalytic production of hydrogen peroxide by protonation-induced dispersible porous polymers with good charge-carrier transport properties. Significant photocatalytic hydrogen peroxide generation occurs under ambient conditions at an unprecedented rate of 23.7 mmol g–1 h–1 and an apparent quantum efficiency of 11.3% at 450 nm. Combined simulations and spectroscopies indicate that sub-picosecond ultrafast electron “localization” from both free carriers and exciton states at the catalytic reaction centers underlie the remarkable photocatalytic performance of the dispersible porous polymers.

Suggested Citation

  • Shengdong Wang & Zhipeng Xie & Da Zhu & Shuai Fu & Yishi Wu & Hongling Yu & Chuangye Lu & Panke Zhou & Mischa Bonn & Hai I. Wang & Qing Liao & Hong Xu & Xiong Chen & Cheng Gu, 2023. "Efficient photocatalytic production of hydrogen peroxide using dispersible and photoactive porous polymers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42720-6
    DOI: 10.1038/s41467-023-42720-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42720-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42720-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kentaro Mase & Masaki Yoneda & Yusuke Yamada & Shunichi Fukuzumi, 2016. "Seawater usable for production and consumption of hydrogen peroxide as a solar fuel," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wang & Qun Song & Qiang Luo & Linqian Li & Xiaobing Huo & Shipeng Chen & Jinyang Li & Yunhong Li & Se Shi & Yihui Yuan & Xiwen Du & Kai Zhang & Ning Wang, 2023. "Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Rashmi Mehrotra & Dongrak Oh & Ji-Wook Jang, 2021. "Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Chaoran Dong & Yilong Yang & Xuemin Hu & Yoonjun Cho & Gyuyong Jang & Yanhui Ao & Luyang Wang & Jinyou Shen & Jong Hyeok Park & Kan Zhang, 2022. "Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Tian Liu & Zhenhua Pan & Kosaku Kato & Junie Jhon M. Vequizo & Rito Yanagi & Xiaoshan Zheng & Weilai Yu & Akira Yamakata & Baoliang Chen & Shu Hu & Kenji Katayama & Chiheng Chu, 2022. "A general interfacial-energetics-tuning strategy for enhanced artificial photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Tian Liu & Zhenhua Pan & Junie Jhon M. Vequizo & Kosaku Kato & Binbin Wu & Akira Yamakata & Kenji Katayama & Baoliang Chen & Chiheng Chu & Kazunari Domen, 2022. "Overall photosynthesis of H2O2 by an inorganic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42720-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.