Author
Listed:
- Qian Liu
(Huazhong Agricultural University)
- Xuan Ma
(Huazhong Agricultural University)
- Xue Li
(Huazhong Agricultural University)
- Xinran Zhang
(Huazhong Agricultural University)
- Shaoli Zhou
(Huazhong Agricultural University)
- Lizhong Xiong
(Huazhong Agricultural University)
- Yu Zhao
(Huazhong Agricultural University)
- Dao-Xiu Zhou
(Huazhong Agricultural University
University Paris-Saclay)
Abstract
Epigenetic reprogramming occurs during reproduction to reset the genome for early development. In flowering plants, mechanistic details of parental methylation remodeling in zygote remain elusive. Here we analyze allele-specific DNA methylation in rice hybrid zygotes and during early embryo development and show that paternal DNA methylation is predominantly remodeled to match maternal allelic levels upon fertilization, which persists after the first zygotic division. The DNA methylation remodeling pattern supports the predominantly maternal-biased gene expression during zygotic genome activation (ZGA) in rice. However, parental allelic-specific methylations are reestablished at the globular embryo stage and associate with allelic-specific histone modification patterns in hybrids. These results reveal that paternal DNA methylation is remodeled to match the maternal pattern during zygotic genome reprogramming and suggest existence of a chromatin memory allowing parental allelic-specific methylation to be maintained in the hybrid.
Suggested Citation
Qian Liu & Xuan Ma & Xue Li & Xinran Zhang & Shaoli Zhou & Lizhong Xiong & Yu Zhao & Dao-Xiu Zhou, 2023.
"Paternal DNA methylation is remodeled to maternal levels in rice zygote,"
Nature Communications, Nature, vol. 14(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42394-0
DOI: 10.1038/s41467-023-42394-0
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42394-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.