IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42244-z.html
   My bibliography  Save this article

Molecular imprinting-based indirect fluorescence detection strategy implemented on paper chip for non-fluorescent microcystin

Author

Listed:
  • Bowei Li

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Ji Qi

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Feng Liu

    (Chinese Academy of Sciences)

  • Rongfang Zhao

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Maryam Arabi

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Abbas Ostovan

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Jinming Song

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Qingdao National Laboratory for Marine Science and Technology)

  • Xiaoyan Wang

    (Binzhou Medical University)

  • Zhiyang Zhang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Lingxin Chen

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Pilot National Laboratory for Marine Science and Technology)

Abstract

Fluorescence analysis is a fast and sensitive method, and has great potential application in trace detection of environmental toxins. However, many important environmental toxins are non-fluorescent substances, and it is still a challenge to construct a fluorescence detection method for non-fluorescent substances. Here, by means of charge transfer effect and smart molecular imprinting technology, we report a sensitive indirect fluorescent sensing mechanism (IFSM) and microcystin (MC-RR) is selected as a model target. A molecular imprinted thin film is immobilized on the surface of zinc ferrite nanoparticles (ZnFe2O4 NPs) by using arginine, a dummy fragment of MC-RR. By implementation of IFSM on the paper-based microfluidic chip, a versatile platform for the quantitative assay of MC-RR is developed at trace level (the limit of detection of 0.43 μg/L and time of 20 min) in real water samples without any pretreatment. Importantly, the proposed IFSM can be easily modified and extended for the wide variety of species which lack direct interaction with the fluorescent substrate. This work offers the potential possibility to meet the requirements for the on-site analysis and may explore potential applications of molecularly imprinted fluorescent sensors.

Suggested Citation

  • Bowei Li & Ji Qi & Feng Liu & Rongfang Zhao & Maryam Arabi & Abbas Ostovan & Jinming Song & Xiaoyan Wang & Zhiyang Zhang & Lingxin Chen, 2023. "Molecular imprinting-based indirect fluorescence detection strategy implemented on paper chip for non-fluorescent microcystin," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42244-z
    DOI: 10.1038/s41467-023-42244-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42244-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42244-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiajia Zhou & Alexey I. Chizhik & Steven Chu & Dayong Jin, 2020. "Single-particle spectroscopy for functional nanomaterials," Nature, Nature, vol. 579(7797), pages 41-50, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Gius Uddin & Susobhan Das & Abde Mayeen Shafi & Lei Wang & Xiaoqi Cui & Fedor Nigmatulin & Faisal Ahmed & Andreas C. Liapis & Weiwei Cai & Zongyin Yang & Harri Lipsanen & Tawfique Hasan & Hoon Hahn, 2024. "Broadband miniaturized spectrometers with a van der Waals tunnel diode," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Chuchuan Hong & Justus C. Ndukaife, 2023. "Scalable trapping of single nanosized extracellular vesicles using plasmonics," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42244-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.