IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42196-4.html
   My bibliography  Save this article

Fibrocystin/Polyductin releases a C-terminal fragment that translocates into mitochondria and suppresses cystogenesis

Author

Listed:
  • Rebecca V Walker

    (University of Maryland School of Medicine)

  • Qin Yao

    (University of Maryland School of Medicine
    National Institutes of Health)

  • Hangxue Xu

    (University of Maryland School of Medicine)

  • Anthony Maranto

    (University of Maryland School of Medicine)

  • Kristen F Swaney

    (Johns Hopkins University School of Medicine)

  • Sreekumar Ramachandran

    (Johns Hopkins University School of Medicine)

  • Rong Li

    (Johns Hopkins University School of Medicine
    Mechanobiology Institute and Department of Biological Sciences, National University of Singapore)

  • Laura Cassina

    (IRCCS San Raffaele Scientific Institute)

  • Brian M Polster

    (University of Maryland School of Medicine)

  • Patricia Outeda

    (University of Maryland School of Medicine)

  • Alessandra Boletta

    (IRCCS San Raffaele Scientific Institute)

  • Terry Watnick

    (University of Maryland School of Medicine)

  • Feng Qian

    (University of Maryland School of Medicine)

Abstract

Fibrocystin/Polyductin (FPC), encoded by PKHD1, is associated with autosomal recessive polycystic kidney disease (ARPKD), yet its precise role in cystogenesis remains unclear. Here we show that FPC undergoes complex proteolytic processing in developing kidneys, generating three soluble C-terminal fragments (ICDs). Notably, ICD15, contains a novel mitochondrial targeting sequence at its N-terminus, facilitating its translocation into mitochondria. This enhances mitochondrial respiration in renal epithelial cells, partially restoring impaired mitochondrial function caused by FPC loss. FPC inactivation leads to abnormal ultrastructural morphology of mitochondria in kidney tubules without cyst formation. Moreover, FPC inactivation significantly exacerbates renal cystogenesis and triggers severe pancreatic cystogenesis in a Pkd1 mouse mutant Pkd1V/V in which cleavage of Pkd1-encoded Polycystin-1 at the GPCR Proteolysis Site is blocked. Deleting ICD15 enhances renal cystogenesis without inducing pancreatic cysts in Pkd1V/V mice. These findings reveal a direct link between FPC and a mitochondrial pathway through ICD15 cleavage, crucial for cystogenesis mechanisms.

Suggested Citation

  • Rebecca V Walker & Qin Yao & Hangxue Xu & Anthony Maranto & Kristen F Swaney & Sreekumar Ramachandran & Rong Li & Laura Cassina & Brian M Polster & Patricia Outeda & Alessandra Boletta & Terry Watnick, 2023. "Fibrocystin/Polyductin releases a C-terminal fragment that translocates into mitochondria and suppresses cystogenesis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42196-4
    DOI: 10.1038/s41467-023-42196-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42196-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42196-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Monika Pema & Luca Drusian & Marco Chiaravalli & Maddalena Castelli & Qin Yao & Sara Ricciardi & Stefan Somlo & Feng Qian & Stefano Biffo & Alessandra Boletta, 2016. "mTORC1-mediated inhibition of polycystin-1 expression drives renal cyst formation in tuberous sclerosis complex," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
    2. Laura Onuchic & Valeria Padovano & Giorgia Schena & Vanathy Rajendran & Ke Dong & Xiaojian Shi & Raj Pandya & Victoria Rai & Nikolay P. Gresko & Omair Ahmed & TuKiet T. Lam & Weiwei Wang & Hongying Sh, 2023. "The C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Sachin Hajarnis & Ronak Lakhia & Matanel Yheskel & Darren Williams & Mehran Sorourian & Xueqing Liu & Karam Aboudehen & Shanrong Zhang & Kara Kersjes & Ryan Galasso & Jian Li & Vivek Kaimal & Steven L, 2017. "microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism," Nature Communications, Nature, vol. 8(1), pages 1-15, April.
    4. Linhao Ruan & Chuankai Zhou & Erli Jin & Andrei Kucharavy & Ying Zhang & Zhihui Wen & Laurence Florens & Rong Li, 2017. "Cytosolic proteostasis through importing of misfolded proteins into mitochondria," Nature, Nature, vol. 543(7645), pages 443-446, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Fischbach & Angela Johns & Kara L. Schneider & Xinxin Hao & Peter Tessarz & Thomas Nyström, 2023. "Artificial Hsp104-mediated systems for re-localizing protein aggregates," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Laura Onuchic & Valeria Padovano & Giorgia Schena & Vanathy Rajendran & Ke Dong & Xiaojian Shi & Raj Pandya & Victoria Rai & Nikolay P. Gresko & Omair Ahmed & TuKiet T. Lam & Weiwei Wang & Hongying Sh, 2023. "The C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Pascale Baden & Maria Jose Perez & Hariam Raji & Federico Bertoli & Stefanie Kalb & María Illescas & Fokion Spanos & Claudio Giuliano & Alessandra Maria Calogero & Marvin Oldrati & Hannah Hebestreit &, 2023. "Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Sibiao Yue & Lei Wang & George N. DeMartino & FangZhou Zhao & Yi Liu & Matthew H. Sieber, 2022. "Highly conserved shifts in ubiquitin-proteasome system (UPS) activity drive mitochondrial remodeling during quiescence," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Ronak Lakhia & Harini Ramalingam & Chun-Mien Chang & Patricia Cobo-Stark & Laurence Biggers & Andrea Flaten & Jesus Alvarez & Tania Valencia & Darren P. Wallace & Edmund C. Lee & Vishal Patel, 2022. "PKD1 and PKD2 mRNA cis-inhibition drives polycystic kidney disease progression," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Eirini Lionaki & Ilias Gkikas & Ioanna Daskalaki & Maria-Konstantina Ioannidi & Maria I. Klapa & Nektarios Tavernarakis, 2022. "Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42196-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.