IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42179-5.html
   My bibliography  Save this article

Bile acids-mediated intracellular cholesterol transport promotes intestinal cholesterol absorption and NPC1L1 recycling

Author

Listed:
  • Jian Xiao

    (Wuhan University)

  • Le-Wei Dong

    (Wuhan University)

  • Shuai Liu

    (Wuhan University
    First Affiliated Hospital of Xinjiang Medical University)

  • Fan-Hua Meng

    (Wuhan University
    First Affiliated Hospital of Xinjiang Medical University
    Affiliated Hospital of Jining Medical University)

  • Chang Xie

    (Wuhan University)

  • Xiao-Yi Lu

    (Wuhan University)

  • Weiping J. Zhang

    (Naval Medical University)

  • Jie Luo

    (Wuhan University)

  • Bao-Liang Song

    (Wuhan University)

Abstract

Niemann-Pick C1-like 1 (NPC1L1) is essential for intestinal cholesterol absorption. Together with the cholesterol-rich and Flotillin-positive membrane microdomain, NPC1L1 is internalized via clathrin-mediated endocytosis and transported to endocytic recycling compartment (ERC). When ERC cholesterol level decreases, NPC1L1 interacts with LIMA1 and moves back to plasma membrane. However, how cholesterol leaves ERC is unknown. Here, we find that, in male mice, intracellular bile acids facilitate cholesterol transport to other organelles, such as endoplasmic reticulum, in a non-micellar fashion. When cholesterol level in ERC is decreased by bile acids, the NPC1L1 carboxyl terminus that previously interacts with the cholesterol-rich membranes via the A1272LAL residues dissociates from membrane, exposing the Q1277KR motif for LIMA1 recruitment. Then NPC1L1 moves back to plasma membrane. This study demonstrates an intracellular cholesterol transport function of bile acids and explains how the substantial amount of cholesterol in NPC1L1-positive compartments is unloaded in enterocytes during cholesterol absorption.

Suggested Citation

  • Jian Xiao & Le-Wei Dong & Shuai Liu & Fan-Hua Meng & Chang Xie & Xiao-Yi Lu & Weiping J. Zhang & Jie Luo & Bao-Liang Song, 2023. "Bile acids-mediated intracellular cholesterol transport promotes intestinal cholesterol absorption and NPC1L1 recycling," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42179-5
    DOI: 10.1038/s41467-023-42179-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42179-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42179-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jian-Wei Hao & Juan Wang & Huiling Guo & Yin-Yue Zhao & Hui-Hui Sun & Yi-Fan Li & Xiao-Ying Lai & Ning Zhao & Xu Wang & Changchuan Xie & Lixin Hong & Xi Huang & Hong-Rui Wang & Cheng-Bin Li & Bin Lian, 2020. "CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graham A. Heieis & Thiago A. Patente & Luís Almeida & Frank Vrieling & Tamar Tak & Georgia Perona-Wright & Rick M. Maizels & Rinke Stienstra & Bart Everts, 2023. "Metabolic heterogeneity of tissue-resident macrophages in homeostasis and during helminth infection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. V. S. Peche & T. A. Pietka & M. Jacome-Sosa & D. Samovski & H. Palacios & G. Chatterjee-Basu & A. C. Dudley & W. Beatty & G. A. Meyer & I. J. Goldberg & N. A. Abumrad, 2023. "Endothelial cell CD36 regulates membrane ceramide formation, exosome fatty acid transfer and circulating fatty acid levels," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Shao-Chin Wu & Yuan-Ming Lo & Jui-Hao Lee & Chin-Yau Chen & Tung-Wei Chen & Hong-Wen Liu & Wei-Nan Lian & Kate Hua & Chen-Chung Liao & Wei-Ju Lin & Chih-Yung Yang & Chien-Yi Tung & Chi-Hung Lin, 2022. "Stomatin modulates adipogenesis through the ERK pathway and regulates fatty acid uptake and lipid droplet growth," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Li Weng & Wen-Shuai Tang & Xu Wang & Yingyun Gong & Changqin Liu & Ni-Na Hong & Ying Tao & Kuang-Zheng Li & Shu-Ning Liu & Wanzi Jiang & Ying Li & Ke Yao & Li Chen & He Huang & Yu-Zheng Zhao & Ze-Ping, 2024. "Surplus fatty acid synthesis increases oxidative stress in adipocytes and induces lipodystrophy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Phillip M. Brailey & Lauren Evans & Juan Carlos López-Rodríguez & Anthony Sinadinos & Victoria Tyrrel & Gavin Kelly & Valerie O’Donnell & Peter Ghazal & Susan John & Patricia Barral, 2022. "CD1d-dependent rewiring of lipid metabolism in macrophages regulates innate immune responses," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42179-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.