IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42130-8.html
   My bibliography  Save this article

Chirality-induced avalanche magnetization of magnetite by an RNA precursor

Author

Listed:
  • S. Furkan Ozturk

    (Harvard University)

  • Deb Kumar Bhowmick

    (Weizmann Institute)

  • Yael Kapon

    (The Hebrew University of Jerusalem)

  • Yutao Sang

    (Weizmann Institute)

  • Anil Kumar

    (Weizmann Institute)

  • Yossi Paltiel

    (The Hebrew University of Jerusalem)

  • Ron Naaman

    (Weizmann Institute)

  • Dimitar D. Sasselov

    (Harvard University)

Abstract

Homochirality is a hallmark of life on Earth. To achieve and maintain homochirality within a prebiotic network, the presence of an environmental factor acting as a chiral agent and providing a persistent chiral bias to prebiotic chemistry is highly advantageous. Magnetized surfaces are prebiotically plausible chiral agents due to the chiral-induced spin selectivity (CISS) effect, and they were utilized to attain homochiral ribose-aminooxazoline (RAO), an RNA precursor. However, natural magnetic minerals are typically weakly magnetized, necessitating mechanisms to enhance their magnetization for their use as effective chiral agents. Here, we report the magnetization of magnetic surfaces by crystallizing enantiopure RAO, whereby chiral molecules induce a uniform surface magnetization due to the CISS effect, which spreads across the magnetic surface akin to an avalanche. Chirality-induced avalanche magnetization enables a feedback between chiral molecules and magnetic surfaces, which can amplify a weak magnetization and allow for highly efficient spin-selective processes on magnetic minerals.

Suggested Citation

  • S. Furkan Ozturk & Deb Kumar Bhowmick & Yael Kapon & Yutao Sang & Anil Kumar & Yossi Paltiel & Ron Naaman & Dimitar D. Sasselov, 2023. "Chirality-induced avalanche magnetization of magnetite by an RNA precursor," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42130-8
    DOI: 10.1038/s41467-023-42130-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42130-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42130-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oren Ben Dor & Shira Yochelis & Anna Radko & Kiran Vankayala & Eyal Capua & Amir Capua & See-Hun Yang & Lech Tomasz Baczewski & Stuart Stephen Papworth Parkin & Ron Naaman & Yossi Paltiel, 2017. "Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuchun Zhang & Lin Liu & Bin Tu & Bin Cui & Jiahui Guo & Xing Zhao & Jingyu Wang & Yong Yan, 2023. "An artificial synapse based on molecular junctions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42130-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.