IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41949-5.html
   My bibliography  Save this article

Subwavelength terahertz imaging via virtual superlensing in the radiating near field

Author

Listed:
  • Alessandro Tuniz

    (University of Sydney
    The University of Sydney Nano Institute, The University of Sydney)

  • Boris T. Kuhlmey

    (University of Sydney
    The University of Sydney Nano Institute, The University of Sydney)

Abstract

Imaging with resolutions much below the wavelength λ – now common in the visible spectrum – remains challenging at lower frequencies, where exponentially decaying evanescent waves are generally measured using a tip or antenna close to an object. Such approaches are often problematic because probes can perturb the near-field itself. Here we show that information encoded in evanescent waves can be probed further than previously thought, by reconstructing truthful images of the near-field through selective amplification of evanescent waves, akin to a virtual superlens that images the near field without perturbing it. We quantify trade-offs between noise and measurement distance, experimentally demonstrating reconstruction of complex images with subwavelength features down to a resolution of λ/7 and amplitude signal-to-noise ratios

Suggested Citation

  • Alessandro Tuniz & Boris T. Kuhlmey, 2023. "Subwavelength terahertz imaging via virtual superlensing in the radiating near field," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41949-5
    DOI: 10.1038/s41467-023-41949-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41949-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41949-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Junsuk Rho & Ziliang Ye & Yi Xiong & Xiaobo Yin & Zhaowei Liu & Hyeunseok Choi & Guy Bartal & Xiang Zhang, 2010. "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nature Communications, Nature, vol. 1(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongwoo Lee & Beomseok Oh & Jeonghoon Park & Seong-Won Moon & Kilsoo Shin & Sea-Moon Kim & Junsuk Rho, 2024. "Wide field-of-hearing metalens for aberration-free sound capture," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41949-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.