IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41934-y.html
   My bibliography  Save this article

Quantitative three-dimensional local order analysis of nanomaterials through electron diffraction

Author

Listed:
  • Ella Mara Schmidt

    (University of Bremen
    University of Bremen
    University of Oxford)

  • Paul Benjamin Klar

    (University of Bremen
    Institute of Physics of the Czech Academy of Sciences)

  • Yaşar Krysiak

    (Institute of Physics of the Czech Academy of Sciences
    Leibniz University Hannover)

  • Petr Svora

    (Institute of Physics of the Czech Academy of Sciences)

  • Andrew L. Goodwin

    (University of Oxford)

  • Lukas Palatinus

    (Institute of Physics of the Czech Academy of Sciences)

Abstract

Structure-property relationships in ordered materials have long been a core principle in materials design. However, the introduction of disorder into materials provides structural flexibility and thus access to material properties that are not attainable in conventional, ordered materials. To understand disorder-property relationships, the disorder – i.e., the local ordering principles – must be quantified. Local order can be probed experimentally by diffuse scattering. The analysis is notoriously difficult, especially if only powder samples are available. Here, we combine the advantages of three-dimensional electron diffraction – a method that allows single crystal diffraction measurements on sub-micron sized crystals – and three-dimensional difference pair distribution function analysis (3D-ΔPDF) to address this problem. In this work, we compare the 3D-ΔPDF from electron diffraction data with those obtained from neutron and x-ray experiments of yttria-stabilized zirconia (Zr0.82Y0.18O1.91) and demonstrate the reliability of the proposed approach.

Suggested Citation

  • Ella Mara Schmidt & Paul Benjamin Klar & Yaşar Krysiak & Petr Svora & Andrew L. Goodwin & Lukas Palatinus, 2023. "Quantitative three-dimensional local order analysis of nanomaterials through electron diffraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41934-y
    DOI: 10.1038/s41467-023-41934-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41934-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41934-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David A. Keen & Andrew L. Goodwin, 2015. "The crystallography of correlated disorder," Nature, Nature, vol. 521(7552), pages 303-309, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuta Yasui & Masataka Tansho & Kotaro Fujii & Yuichi Sakuda & Atsushi Goto & Shinobu Ohki & Yuuki Mogami & Takahiro Iijima & Shintaro Kobayashi & Shogo Kawaguchi & Keiichi Osaka & Kazutaka Ikeda & Tos, 2023. "Hidden chemical order in disordered Ba7Nb4MoO20 revealed by resonant X-ray diffraction and solid-state NMR," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Nattapol Ma & Ryo Ohtani & Hung M. Le & Søren S. Sørensen & Ryuta Ishikawa & Satoshi Kawata & Sareeya Bureekaew & Soracha Kosasang & Yoshiyuki Kawazoe & Koji Ohara & Morten M. Smedskjaer & Satoshi Hor, 2022. "Exploration of glassy state in Prussian blue analogues," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Adam F. Sapnik & Irene Bechis & Alice M. Bumstead & Timothy Johnson & Philip A. Chater & David A. Keen & Kim E. Jelfs & Thomas D. Bennett, 2022. "Multivariate analysis of disorder in metal–organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Nikolaj Roth & Andrew L. Goodwin, 2023. "Tuning electronic and phononic states with hidden order in disordered crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41934-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.