IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41658-z.html
   My bibliography  Save this article

IGF1R-phosphorylated PYCR1 facilitates ELK4 transcriptional activity and sustains tumor growth under hypoxia

Author

Listed:
  • Ke Zheng

    (The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital
    Shanghai Jiao Tong University School of Medicine)

  • Nannan Sha

    (Shanghai Jiao Tong University School of Medicine)

  • Guofang Hou

    (Shanghai Jiao Tong University School of Medicine)

  • Zhuyun Leng

    (Tongji University)

  • Qin Zhao

    (Shanghai Jiao Tong University School of Medicine)

  • Li Zhang

    (Tongji University)

  • Lingnan He

    (Tongji University)

  • Meidong Xu

    (Tongji University)

  • Yuhui Jiang

    (Shanghai Jiao Tong University School of Medicine)

  • Tao Chen

    (Tongji University)

Abstract

The proline synthesis is importantly involved in tumor growth under hypoxia, while the underlying mechanism remains to be further investigated. Here we show that pyrroline-5-carpoxylate reductase-1 (PYCR1), displaying a constant nuclear localization, is phosphorylated by nuclear IGF1R at Tyrosine 135 under hypoxia; this phosphorylation promotes the binding of PYCR1 to ELK4 and thus PYCR1 recruitment to ELK4-targeted genes promoter. Under hypoxia, ELK4-binding ability and enzymatic activity of PYCR1 are both required for ELK4-Sirt7-mediated transcriptional repression and cell growth maintenance, in which PYCR1-catalyzed NAD+ production stimulates the deacetylation activity of Sirt7 on H3K18ac that restrains genes transcription. Functionally, PYCR1 Tyr-135 phosphorylation exerts supportive effect on tumor growth under hypoxia, and the level of PYCR1 Tyr-135 phosphorylation is associated with malignancy of colorectal cancer (CRC). These data uncover the relationship between the compartmentally metabolic activity of PYCR1 and genes transcription regulation, and highlight the oncogenic role of PYCR1 during CRC development.

Suggested Citation

  • Ke Zheng & Nannan Sha & Guofang Hou & Zhuyun Leng & Qin Zhao & Li Zhang & Lingnan He & Meidong Xu & Yuhui Jiang & Tao Chen, 2023. "IGF1R-phosphorylated PYCR1 facilitates ELK4 transcriptional activity and sustains tumor growth under hypoxia," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41658-z
    DOI: 10.1038/s41467-023-41658-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41658-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41658-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew F. Barber & Eriko Michishita-Kioi & Yuanxin Xi & Luisa Tasselli & Mitomu Kioi & Zarmik Moqtaderi & Ruth I. Tennen & Silvana Paredes & Nicolas L. Young & Kaifu Chen & Kevin Struhl & Benjamin A., 2012. "SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation," Nature, Nature, vol. 487(7405), pages 114-118, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sneha Mishra & Claudia Cosentino & Ankit Kumar Tamta & Danish Khan & Shalini Srinivasan & Venkatraman Ravi & Elena Abbotto & Bangalore Prabhashankar Arathi & Shweta Kumar & Aditi Jain & Anand S. Ramai, 2022. "Sirtuin 6 inhibition protects against glucocorticoid-induced skeletal muscle atrophy by regulating IGF/PI3K/AKT signaling," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    2. Yu Tao & Yuan Zhang & Xiaohong Jin & Nan Hua & Hong Liu & Renfei Qi & Zitong Huang & Yufang Sun & Dongsheng Jiang & Terrance P. Snutch & Xinghong Jiang & Jin Tao, 2023. "Epigenetic regulation of beta-endorphin synthesis in hypothalamic arcuate nucleus neurons modulates neuropathic pain in a rodent pain model," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41658-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.