Author
Listed:
- Tenghui Ye
(South China University of Technology, Guangzhou International Campus)
- Xi Liu
(South China University of Technology, Guangzhou International Campus)
- Xianghua Zhong
(South China University of Technology, Guangzhou International Campus)
- Ran Yan
(South China University of Technology, Guangzhou International Campus)
- Peng Shi
(South China University of Technology, Guangzhou International Campus
South China University of Technology
South China University of Technology
South China University of Technology)
Abstract
Systemic infusion is a prevalent administration method for mesenchymal stromal cells (MSCs) in clinical trials. However, the inability to deliver a large number of therapeutic cells to diseased tissue is a substantial barrier. Here, we demonstrate that surface engineering of MSCs with polyvalent antibodies can effectively improve the targeting efficiency of MSCs to diseased tissue. The polyvalent antibody is directly synthesized on the cell surface via DNA template-directed biomolecule assembly. The data show that engineered MSCs exhibit superior adhesion to inflamed endothelium in vitro and in vivo. In female mouse models of acute inflammation and inflammatory bowel disease, engineered MSCs show enhanced targeting efficiency and therapeutic efficacy in damaged tissues. Notably, the entire procedure for polyvalent functionalization only requires the simple mixing of cells and solutions under physiological conditions within a few hours, which significantly reduces preparation processes and manufacturing costs and minimizes the impact on the cells. Thus, our study provides a strategy for improved MSC-based regenerative medicine.
Suggested Citation
Tenghui Ye & Xi Liu & Xianghua Zhong & Ran Yan & Peng Shi, 2023.
"Nongenetic surface engineering of mesenchymal stromal cells with polyvalent antibodies to enhance targeting efficiency,"
Nature Communications, Nature, vol. 14(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41609-8
DOI: 10.1038/s41467-023-41609-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41609-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.