IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41142-8.html
   My bibliography  Save this article

Iberian Margin surface ocean cooling led freshening during Marine Isotope Stage 6 abrupt cooling events

Author

Listed:
  • Hongrui Zhang

    (Geological Institute, ETH Zürich)

  • Yongsong Huang

    (Brown University)

  • Reto Wijker

    (Geological Institute, ETH Zürich)

  • Isabel Cacho

    (Universitat de Barcelona)

  • Judit Torner

    (Universitat de Barcelona)

  • Madeleine Santos

    (Geological Institute, ETH Zürich)

  • Oliver Kost

    (Geological Institute, ETH Zürich)

  • Bingbing Wei

    (Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research)

  • Heather Stoll

    (Geological Institute, ETH Zürich)

Abstract

The high-resolution paleoclimate records on the Iberian Margin provide an excellent archive to study the mechanism of abrupt climate events. Previous studies on the Iberian Margin proposed that the surface cooling reconstructed by the alkenone-unsaturation index coincided with surface water freshening inferred from an elevated percentage of tetra-unsaturated alkenones, C37:4%. However, recent data indicate that marine alkenone producers, coccolithophores, do not produce more C37:4 in culture as salinity decreases. Hence, the causes for high C37:4 are still unclear. Here we provide detailed alkenone measurements to trace the producers of alkenones in combination with foraminiferal Mg/Ca and oxygen isotope ratios to trace salinity variations. The results indicate that all alkenones were produced by coccolithophores and the high C37:4% reflects decrease in SST instead of freshening. Furthermore, during the millennial climate changes, a surface freshening did not always trigger a cooling, but sometimes happened in the middle of multiple-stage cooling events and likely amplified the temperature decrease.

Suggested Citation

  • Hongrui Zhang & Yongsong Huang & Reto Wijker & Isabel Cacho & Judit Torner & Madeleine Santos & Oliver Kost & Bingbing Wei & Heather Stoll, 2023. "Iberian Margin surface ocean cooling led freshening during Marine Isotope Stage 6 abrupt cooling events," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41142-8
    DOI: 10.1038/s41467-023-41142-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41142-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41142-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Elderfield & G. Ganssen, 2000. "Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios," Nature, Nature, vol. 405(6785), pages 442-445, May.
    2. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Stephen Barker & James Chen & Xun Gong & Lukas Jonkers & Gregor Knorr & David Thornalley, 2015. "Icebergs not the trigger for North Atlantic cold events," Nature, Nature, vol. 520(7547), pages 333-336, April.
    4. Lars Max & Dirk Nürnberg & Cristiano M. Chiessi & Marlene M. Lenz & Stefan Mulitza, 2022. "Subsurface ocean warming preceded Heinrich Events," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. G. Marino & E. J. Rohling & L. Rodríguez-Sanz & K. M. Grant & D. Heslop & A. P. Roberts & J. D. Stanford & J. Yu, 2015. "Correction: Corrigendum: Bipolar seesaw control on last interglacial sea level," Nature, Nature, vol. 526(7571), pages 144-144, October.
    6. G. Marino & E. J. Rohling & L. Rodríguez-Sanz & K. M. Grant & D. Heslop & A. P. Roberts & J. D. Stanford & J. Yu, 2015. "Bipolar seesaw control on last interglacial sea level," Nature, Nature, vol. 522(7555), pages 197-201, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Lars Max & Dirk Nürnberg & Cristiano M. Chiessi & Marlene M. Lenz & Stefan Mulitza, 2022. "Subsurface ocean warming preceded Heinrich Events," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Clemens Schannwell & Uwe Mikolajewicz & Marie-Luise Kapsch & Florian Ziemen, 2024. "A mechanism for reconciling the synchronisation of Heinrich events and Dansgaard-Oeschger cycles," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Yuhao Dai & Jimin Yu & Haojia Ren & Xuan Ji, 2022. "Deglacial Subantarctic CO2 outgassing driven by a weakened solubility pump," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. F. Held & H. Cheng & R. L. Edwards & O. Tüysüz & K. Koç & D. Fleitmann, 2024. "Dansgaard-Oeschger cycles of the penultimate and last glacial period recorded in stalagmites from Türkiye," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Jingyu Liu & Yipeng Wang & Samuel L. Jaccard & Nan Wang & Xun Gong & Nianqiao Fang & Rui Bao, 2023. "Pre-aged terrigenous organic carbon biases ocean ventilation-age reconstructions in the North Atlantic," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41142-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.