IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41093-0.html
   My bibliography  Save this article

Synthesize high-dimensional longitudinal electronic health records via hierarchical autoregressive language model

Author

Listed:
  • Brandon Theodorou

    (University of Illinois at Urbana-Champaign
    Medisyn Inc.)

  • Cao Xiao

    (Medisyn Inc.)

  • Jimeng Sun

    (University of Illinois at Urbana-Champaign
    Medisyn Inc.)

Abstract

Synthetic electronic health records (EHRs) that are both realistic and privacy-preserving offer alternatives to real EHRs for machine learning (ML) and statistical analysis. However, generating high-fidelity EHR data in its original, high-dimensional form poses challenges for existing methods. We propose Hierarchical Autoregressive Language mOdel (HALO) for generating longitudinal, high-dimensional EHR, which preserve the statistical properties of real EHRs and can train accurate ML models without privacy concerns. HALO generates a probability density function over medical codes, clinical visits, and patient records, allowing for generating realistic EHR data without requiring variable selection or aggregation. Extensive experiments demonstrated that HALO can generate high-fidelity data with high-dimensional disease code probabilities closely mirroring (above 0.9 R2 correlation) real EHR data. HALO also enhances the accuracy of predictive modeling and enables downstream ML models to attain similar accuracy as models trained on genuine data.

Suggested Citation

  • Brandon Theodorou & Cao Xiao & Jimeng Sun, 2023. "Synthesize high-dimensional longitudinal electronic health records via hierarchical autoregressive language model," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41093-0
    DOI: 10.1038/s41467-023-41093-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41093-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41093-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Yan & Yao Yan & Zhiyu Wan & Ziqi Zhang & Larsson Omberg & Justin Guinney & Sean D. Mooney & Bradley A. Malin, 2022. "A Multifaceted benchmarking of synthetic electronic health record generation models," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Chang & Zhennan Yan & Mu Zhou & Hui Qu & Xiaoxiao He & Han Zhang & Lohendran Baskaran & Subhi Al’Aref & Hongsheng Li & Shaoting Zhang & Dimitris N. Metaxas, 2023. "Mining multi-center heterogeneous medical data with distributed synthetic learning," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41093-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.