IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40877-8.html
   My bibliography  Save this article

Uncovering spin-orbit coupling-independent hidden spin polarization of energy bands in antiferromagnets

Author

Listed:
  • Lin-Ding Yuan

    (University of Colorado)

  • Xiuwen Zhang

    (University of Colorado)

  • Carlos Mera Acosta

    (Federal University of ABC, Santo Andre)

  • Alex Zunger

    (University of Colorado)

Abstract

Many textbook physical effects in crystals are enabled by some specific symmetries. In contrast to such ‘apparent effects’, ‘hidden effect X’ refers to the general condition where the nominal global system symmetry would disallow the effect X, whereas the symmetry of local sectors within the crystal would enable effect X. Known examples include the hidden Rashba and/or hidden Dresselhaus spin polarization that require spin-orbit coupling, but unlike their apparent counterparts are demonstrated to exist in non-magnetic systems even in inversion-symmetric crystals. Here, we discuss hidden spin polarization effect in collinear antiferromagnets without the requirement for spin-orbit coupling (SOC). Symmetry analysis suggests that antiferromagnets hosting such effect can be classified into six types depending on the global vs local symmetry. We identify which of the possible collinear antiferromagnetic compounds will harbor such hidden polarization and validate these symmetry enabling predictions with first-principles density functional calculations for several representative compounds. This will boost the theoretical and experimental efforts in finding new spin-polarized materials.

Suggested Citation

  • Lin-Ding Yuan & Xiuwen Zhang & Carlos Mera Acosta & Alex Zunger, 2023. "Uncovering spin-orbit coupling-independent hidden spin polarization of energy bands in antiferromagnets," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40877-8
    DOI: 10.1038/s41467-023-40877-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40877-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40877-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linding Yuan & Qihang Liu & Xiuwen Zhang & Jun-Wei Luo & Shu-Shen Li & Alex Zunger, 2019. "Uncovering and tailoring hidden Rashba spin–orbit splitting in centrosymmetric crystals," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Griffitt & M. Spaić & J. Joe & Z. W. Anderson & D. Zhai & M. J. Krogstad & R. Osborn & D. Pelc & M. Greven, 2023. "Local inversion-symmetry breaking in a bismuthate high-Tc superconductor," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40877-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.