IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40831-8.html
   My bibliography  Save this article

Direct visual observation of pedal motion-dependent flexibility of single covalent organic frameworks

Author

Listed:
  • Hongbin Chi

    (Southwest University of Science and Technology)

  • Yang Liu

    (Southwest University of Science and Technology
    Sichuan College of Architectural Technology)

  • Ziyi Li

    (Southwest University of Science and Technology)

  • Wanxin Chen

    (Southwest University of Science and Technology)

  • Yi He

    (Southwest University of Science and Technology)

Abstract

Flexible covalent organic frameworks (COFs) have been studied for applications containing sorption, selective separation, and catalysis. How to correlate the microscopic structure with flexibility in COFs is a great challenge. Herein, we visually track the flexible deformation behaviors of single COF-300 and COF-300-AR particles in response to solvent vapour guests with dark-field microscopy (DFM) in an in operando manner. COF-300-AR with freely-rotating C-N single bonds are synthesized by the reduction of imine-based COF-300 consisting of rigid C=N double bonds without changing topological structure and crystallinity. Unexpectedly, we observe that the flexible deformation of COF-300 is extremely higher than that of COF-300-AR despite it bears many C-N single bonds, clearly illustrating the apparent flexibility decrease of COF-300 after reduction. The high spatiotemporal resolution of DFM enables the finding of inter-particle variations of the flexibility among COF-300 crystals. Experimental characterizations by variable-temperature X-ray diffraction and infrared spectroscopy as well as theoretical calculations demonstrate that the flexible deformation of COF-300 is ascribed to the pedal motion around rigid C=N double bonds. These observations provide new insights into COF flexibility.

Suggested Citation

  • Hongbin Chi & Yang Liu & Ziyi Li & Wanxin Chen & Yi He, 2023. "Direct visual observation of pedal motion-dependent flexibility of single covalent organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40831-8
    DOI: 10.1038/s41467-023-40831-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40831-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40831-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tianqiong Ma & Lei Wei & Lin Liang & Shawn Yin & Le Xu & Jing Niu & Huadong Xue & Xiaoge Wang & Junliang Sun & Yue-Biao Zhang & Wei Wang, 2020. "Diverse crystal size effects in covalent organic frameworks," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangyang Xu & Tu Sun & Tengwu Zeng & Xiangyu Zhang & Xuan Yao & Shan Liu & Zhaolin Shi & Wen Wen & Yingbo Zhao & Shan Jiang & Yanhang Ma & Yue-Biao Zhang, 2023. "Symmetry-breaking dynamics in a tautomeric 3D covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yizhou Yang & Yanyan Chen & Fernando Izquierdo-Ruiz & Clara Schäfer & Martin Rahm & Karl Börjesson, 2023. "A self-standing three-dimensional covalent organic framework film," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Lei Wei & Tu Sun & Zhaolin Shi & Zezhao Xu & Wen Wen & Shan Jiang & Yingbo Zhao & Yanhang Ma & Yue-Biao Zhang, 2022. "Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40831-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.