IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39868-6.html
   My bibliography  Save this article

polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics

Author

Listed:
  • Christopher Kuenneth

    (Georgia Institute of Technology
    University of Bayreuth)

  • Rampi Ramprasad

    (Georgia Institute of Technology)

Abstract

Polymers are a vital part of everyday life. Their chemical universe is so large that it presents unprecedented opportunities as well as significant challenges to identify suitable application-specific candidates. We present a complete end-to-end machine-driven polymer informatics pipeline that can search this space for suitable candidates at unprecedented speed and accuracy. This pipeline includes a polymer chemical fingerprinting capability called polyBERT (inspired by Natural Language Processing concepts), and a multitask learning approach that maps the polyBERT fingerprints to a host of properties. polyBERT is a chemical linguist that treats the chemical structure of polymers as a chemical language. The present approach outstrips the best presently available concepts for polymer property prediction based on handcrafted fingerprint schemes in speed by two orders of magnitude while preserving accuracy, thus making it a strong candidate for deployment in scalable architectures including cloud infrastructures.

Suggested Citation

  • Christopher Kuenneth & Rampi Ramprasad, 2023. "polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39868-6
    DOI: 10.1038/s41467-023-39868-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39868-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39868-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rishi Gurnani & Stuti Shukla & Deepak Kamal & Chao Wu & Jing Hao & Christopher Kuenneth & Pritish Aklujkar & Ashish Khomane & Robert Daniels & Ajinkya A. Deshmukh & Yang Cao & Gregory Sotzing & Rampi , 2024. "AI-assisted discovery of high-temperature dielectrics for energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Tianyu Wu & Min Zhou & Jingcheng Zou & Qi Chen & Feng Qian & Jürgen Kurths & Runhui Liu & Yang Tang, 2024. "AI-guided few-shot inverse design of HDP-mimicking polymers against drug-resistant bacteria," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Jinho Chang & Jong Chul Ye, 2024. "Bidirectional generation of structure and properties through a single molecular foundation model," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39868-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.