IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39826-2.html
   My bibliography  Save this article

Atomic stiffness for bulk modulus prediction and high-throughput screening of ultraincompressible crystals

Author

Listed:
  • Ruihua Jin

    (Wuhan University)

  • Xiaoang Yuan

    (Wuhan University)

  • Enlai Gao

    (Wuhan University)

Abstract

Determining bulk moduli is central to high-throughput screening of ultraincompressible materials. However, existing approaches are either too inaccurate or too expensive for general applications, or they are limited to narrow chemistries. Here we define a microscopic quantity to measure the atomic stiffness for each element in the periodic table. Based on this quantity, we derive an analytic formula for bulk modulus prediction. By analyzing numerous crystals from first-principles calculations, this formula shows superior accuracy, efficiency, universality, and interpretability compared to previous empirical/semiempirical formulae and machine learning models. Directed by our formula predictions and verified by first-principles calculations, 47 ultraincompressible crystals rivaling diamond are identified from over one million material candidates, which extends the family of known ultraincompressible crystals. Finally, treasure maps of possible elemental combinations for ultraincompressible crystals are created from our theory. This theory and insights provide guidelines for designing and discovering ultraincompressible crystals of the future.

Suggested Citation

  • Ruihua Jin & Xiaoang Yuan & Enlai Gao, 2023. "Atomic stiffness for bulk modulus prediction and high-throughput screening of ultraincompressible crystals," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39826-2
    DOI: 10.1038/s41467-023-39826-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39826-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39826-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yongjun Tian & Bo Xu & Dongli Yu & Yanming Ma & Yanbin Wang & Yingbing Jiang & Wentao Hu & Chengchun Tang & Yufei Gao & Kun Luo & Zhisheng Zhao & Li-Min Wang & Bin Wen & Julong He & Zhongyuan Liu, 2013. "Ultrahard nanotwinned cubic boron nitride," Nature, Nature, vol. 493(7432), pages 385-388, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa Sadeghian & Arvydas Palevicius & Paulius Griskevicius & Giedrius Janusas, 2024. "Nonlinear Analysis of the Multi-Layered Nanoplates," Mathematics, MDPI, vol. 12(22), pages 1-19, November.
    2. Mingliang Han & Yuan Wu & Xiaobin Zong & Yaozu Shen & Fei Zhang & Hongbo Lou & Xiao Dong & Zhidan Zeng & Xiangyang Peng & Shuo Hou & Guangyao Lu & Lianghua Xiong & Bingmin Yan & Huiyang Gou & Yanping , 2024. "Lightweight single-phase Al-based complex concentrated alloy with high specific strength," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39826-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.