IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39775-w.html
   My bibliography  Save this article

Imbalanced unfolded protein response signaling contributes to 1-deoxysphingolipid retinal toxicity

Author

Listed:
  • Jessica D. Rosarda

    (The Scripps Research Institute)

  • Sarah Giles

    (The Scripps Research Institute
    Lowy Medical Research Institute)

  • Sarah Harkins-Perry

    (The Scripps Research Institute
    Lowy Medical Research Institute)

  • Elizabeth A. Mills

    (The Scripps Research Institute
    Lowy Medical Research Institute)

  • Martin Friedlander

    (The Scripps Research Institute
    Lowy Medical Research Institute)

  • R. Luke Wiseman

    (The Scripps Research Institute)

  • Kevin T. Eade

    (The Scripps Research Institute
    Lowy Medical Research Institute)

Abstract

The accumulation of atypical, cytotoxic 1-deoxysphingolipids (1-dSLs) has been linked to retinal diseases such as diabetic retinopathy and Macular Telangiectasia Type 2. However, the molecular mechanisms by which 1-dSLs induce toxicity in retinal cells remain poorly understood. Here, we integrate bulk and single-nucleus RNA-sequencing to define biological pathways that modulate 1-dSL toxicity in human retinal organoids. Our results demonstrate that 1-dSLs differentially activate signaling arms of the unfolded protein response (UPR) in photoreceptor cells and Müller glia. Using a combination of pharmacologic activators and inhibitors, we show that sustained PERK signaling through the integrated stress response (ISR) and deficiencies in signaling through the protective ATF6 arm of the UPR are implicated in 1-dSL-induced photoreceptor toxicity. Further, we demonstrate that pharmacologic activation of ATF6 mitigates 1-dSL toxicity without impacting PERK/ISR signaling. Collectively, our results identify new opportunities to intervene in 1-dSL linked diseases through targeting different arms of the UPR.

Suggested Citation

  • Jessica D. Rosarda & Sarah Giles & Sarah Harkins-Perry & Elizabeth A. Mills & Martin Friedlander & R. Luke Wiseman & Kevin T. Eade, 2023. "Imbalanced unfolded protein response signaling contributes to 1-deoxysphingolipid retinal toxicity," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39775-w
    DOI: 10.1038/s41467-023-39775-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39775-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39775-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mototsugu Eiraku & Nozomu Takata & Hiroki Ishibashi & Masako Kawada & Eriko Sakakura & Satoru Okuda & Kiyotoshi Sekiguchi & Taiji Adachi & Yoshiki Sasai, 2011. "Self-organizing optic-cup morphogenesis in three-dimensional culture," Nature, Nature, vol. 472(7341), pages 51-56, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aki Teranishi & Misato Mori & Rihoko Ichiki & Satoshi Toda & Go Shioi & Satoru Okuda, 2024. "An actin bracket-induced elastoplastic transition determines epithelial folding irreversibility," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Nilay Kumar & Jennifer Rangel Ambriz & Kevin Tsai & Mayesha Sahir Mim & Marycruz Flores-Flores & Weitao Chen & Jeremiah J. Zartman & Mark Alber, 2024. "Balancing competing effects of tissue growth and cytoskeletal regulation during Drosophila wing disc development," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Guillermo Martínez-Ara & Núria Taberner & Mami Takayama & Elissavet Sandaltzopoulou & Casandra E. Villava & Miquel Bosch-Padrós & Nozomu Takata & Xavier Trepat & Mototsugu Eiraku & Miki Ebisuya, 2022. "Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39775-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.