IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39594-z.html
   My bibliography  Save this article

Electronic transport driven by collective light-matter coupled states in a quantum device

Author

Listed:
  • Francesco Pisani

    (Université de Paris)

  • Djamal Gacemi

    (Université de Paris)

  • Angela Vasanelli

    (Université de Paris)

  • Lianhe Li

    (University of Leeds)

  • Alexander Giles Davies

    (University of Leeds)

  • Edmund Linfield

    (University of Leeds)

  • Carlo Sirtori

    (Université de Paris)

  • Yanko Todorov

    (Université de Paris)

Abstract

In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light.

Suggested Citation

  • Francesco Pisani & Djamal Gacemi & Angela Vasanelli & Lianhe Li & Alexander Giles Davies & Edmund Linfield & Carlo Sirtori & Yanko Todorov, 2023. "Electronic transport driven by collective light-matter coupled states in a quantum device," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39594-z
    DOI: 10.1038/s41467-023-39594-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39594-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39594-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jongwon Lee & Mykhailo Tymchenko & Christos Argyropoulos & Pai-Yen Chen & Feng Lu & Frederic Demmerle & Gerhard Boehm & Markus-Christian Amann & Andrea Alù & Mikhail A. Belkin, 2014. "Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions," Nature, Nature, vol. 511(7507), pages 65-69, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiroki Takeshita & Ashif Aminulloh Fathnan & Daisuke Nita & Atsuko Nagata & Shinya Sugiura & Hiroki Wakatsuchi, 2024. "Frequency-hopping wave engineering with metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zi-Lan Deng & Meng-Xia Hu & Shanfeng Qiu & Xianfeng Wu & Adam Overvig & Xiangping Li & Andrea Alù, 2024. "Poincaré sphere trajectory encoding metasurfaces based on generalized Malus’ law," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Geng-Bo Wu & Jun Yan Dai & Kam Man Shum & Ka Fai Chan & Qiang Cheng & Tie Jun Cui & Chi Hou Chan, 2024. "A synthetic moving-envelope metasurface antenna for independent control of arbitrary harmonic orders," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Giacomo Venturi & Andrea Mancini & Nicola Melchioni & Stefano Chiodini & Antonio Ambrosio, 2024. "Visible-frequency hyperbolic plasmon polaritons in a natural van der Waals crystal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Junhao Li & Guangwei Hu & Lina Shi & Nan He & Daqian Li & Qiuyu Shang & Qing Zhang & Huange Fu & Linlin Zhou & Wei Xiong & Jianguo Guan & Jian Wang & Sailing He & Lin Chen, 2021. "Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials," Nature Communications, Nature, vol. 12(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39594-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.