IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39586-z.html
   My bibliography  Save this article

Macrophage-to-endothelial cell crosstalk by the cholesterol metabolite 27HC promotes atherosclerosis in male mice

Author

Listed:
  • Liming Yu

    (University of Texas Southwestern Medical Center)

  • Lin Xu

    (University of Texas Southwestern Medical Center)

  • Haiyan Chu

    (University of Texas Southwestern Medical Center)

  • Jun Peng

    (University of Texas Southwestern Medical Center)

  • Anastasia Sacharidou

    (University of Texas Southwestern Medical Center)

  • Hsi-hsien Hsieh

    (University of Texas Southwestern Medical Center)

  • Ada Weinstock

    (New York University School of Medicine
    University of Chicago School of Medicine)

  • Sohaib Khan

    (University of Cincinnati Cancer Center)

  • Liqian Ma

    (University of Illinois at Urbana-Champaign)

  • José Gabriel Barcia Durán

    (New York University School of Medicine)

  • Jeffrey McDonald

    (University of Texas Southwestern Medical Center)

  • Erik R. Nelson

    (University of Illinois at Urbana-Champaign)

  • Sunghee Park

    (Duke University School of Medicine)

  • Donald P. McDonnell

    (Duke University School of Medicine)

  • Kathryn J. Moore

    (New York University School of Medicine)

  • Lily Jun-shen Huang

    (University of Texas Southwestern Medical Center)

  • Edward A. Fisher

    (New York University School of Medicine)

  • Chieko Mineo

    (University of Texas Southwestern Medical Center
    University of Texas Southwestern Medical Center)

  • Linzhang Huang

    (Fudan University
    Fudan University
    Fudan University)

  • Philip W. Shaul

    (University of Texas Southwestern Medical Center)

Abstract

Hypercholesterolemia and vascular inflammation are key interconnected contributors to the pathogenesis of atherosclerosis. How hypercholesterolemia initiates vascular inflammation is poorly understood. Here we show in male mice that hypercholesterolemia-driven endothelial activation, monocyte recruitment and atherosclerotic lesion formation are promoted by a crosstalk between macrophages and endothelial cells mediated by the cholesterol metabolite 27-hydroxycholesterol (27HC). The pro-atherogenic actions of macrophage-derived 27HC require endothelial estrogen receptor alpha (ERα) and disassociation of the cytoplasmic scaffolding protein septin 11 from ERα, leading to extranuclear ERα- and septin 11-dependent activation of NF-κB. Furthermore, pharmacologic inhibition of cyp27a1, which generates 27HC, affords atheroprotection by reducing endothelial activation and monocyte recruitment. These findings demonstrate cell-to-cell communication by 27HC, and identify a major causal linkage between the hypercholesterolemia and vascular inflammation that partner to promote atherosclerosis. Interventions interrupting this linkage may provide the means to blunt vascular inflammation without impairing host defense to combat the risk of atherosclerotic cardiovascular disease that remains despite lipid-lowering therapies.

Suggested Citation

  • Liming Yu & Lin Xu & Haiyan Chu & Jun Peng & Anastasia Sacharidou & Hsi-hsien Hsieh & Ada Weinstock & Sohaib Khan & Liqian Ma & José Gabriel Barcia Durán & Jeffrey McDonald & Erik R. Nelson & Sunghee , 2023. "Macrophage-to-endothelial cell crosstalk by the cholesterol metabolite 27HC promotes atherosclerosis in male mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39586-z
    DOI: 10.1038/s41467-023-39586-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39586-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39586-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linzhang Huang & Ken L. Chambliss & Xiaofei Gao & Ivan S. Yuhanna & Erica Behling-Kelly & Sonia Bergaya & Mohamed Ahmed & Peter Michaely & Kate Luby-Phelps & Anza Darehshouri & Lin Xu & Edward A. Fish, 2019. "SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis," Nature, Nature, vol. 569(7757), pages 565-569, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seung Hyun Lee & Nayoung Kim & Minkyu Kim & Sang-Ho Woo & Inhee Han & Jisu Park & Kyeongdae Kim & Kyu Seong Park & Kibyeong Kim & Dahee Shim & Sang-eun Park & Jing Yu Zhang & Du-Min Go & Dae-Yong Kim , 2022. "Single-cell transcriptomics reveal cellular diversity of aortic valve and the immunomodulation by PPARγ during hyperlipidemia," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    2. Juan Pang & Fitore Raka & Alya Abbas Heirali & Weijuan Shao & Dinghui Liu & Jianqiu Gu & Jia Nuo Feng & Chieko Mineo & Philip W. Shaul & Xiaoxian Qian & Bryan Coburn & Khosrow Adeli & Wenhua Ling & Ti, 2023. "Resveratrol intervention attenuates chylomicron secretion via repressing intestinal FXR-induced expression of scavenger receptor SR-B1," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Anastasia Sacharidou & Ken Chambliss & Jun Peng & Jose Barrera & Keiji Tanigaki & Katherine Luby-Phelps & İpek Özdemir & Sohaib Khan & Shashank R. Sirsi & Sung Hoon Kim & Benita S. Katzenellenbogen & , 2023. "Endothelial ERα promotes glucose tolerance by enhancing endothelial insulin transport to skeletal muscle," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39586-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.