IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39468-4.html
   My bibliography  Save this article

Absence of localization in interacting spin chains with a discrete symmetry

Author

Listed:
  • Benedikt Kloss

    (Flatiron Institute)

  • Jad C. Halimeh

    (Ludwig-Maximilians-Universität München
    Munich Center for Quantum Science and Technology (MCQST))

  • Achilleas Lazarides

    (Loughborough University)

  • Yevgeny Bar Lev

    (Ben-Gurion University of the Negev)

Abstract

Novel paradigms of strong ergodicity breaking have recently attracted significant attention in condensed matter physics. Understanding the exact conditions required for their emergence or breakdown not only sheds more light on thermalization and its absence in closed quantum many-body systems, but it also has potential benefits for applications in quantum information technology. A case of particular interest is many-body localization whose conditions are not yet fully settled. Here, we prove that spin chains symmetric under a combination of mirror and spin-flip symmetries and with a non-degenerate spectrum show finite spin transport at zero total magnetization and infinite temperature. We demonstrate this numerically using two prominent examples: the Stark many-body localization system (Stark-MBL) and the symmetrized many-body localization system (symmetrized–MBL). We provide evidence of delocalization at all energy densities and show that delocalization persists when the symmetry is broken. We use our results to construct two localized systems which, when coupled, delocalize each other. Our work demonstrates the dramatic effect symmetries can have on disordered systems, proves that the existence of exact resonances is not a sufficient condition for delocalization, and opens the door to generalization to higher spatial dimensions and different conservation laws.

Suggested Citation

  • Benedikt Kloss & Jad C. Halimeh & Achilleas Lazarides & Yevgeny Bar Lev, 2023. "Absence of localization in interacting spin chains with a discrete symmetry," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39468-4
    DOI: 10.1038/s41467-023-39468-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39468-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39468-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marko Žnidarič & Martin Horvat, 2013. "Transport in a disordered tight-binding chain with dephasing," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(2), pages 1-11, February.
    2. W. Morong & F. Liu & P. Becker & K. S. Collins & L. Feng & A. Kyprianidis & G. Pagano & T. You & A. V. Gorshkov & C. Monroe, 2021. "Observation of Stark many-body localization without disorder," Nature, Nature, vol. 599(7885), pages 393-398, November.
    3. Sebastian Scherg & Thomas Kohlert & Pablo Sala & Frank Pollmann & Bharath Hebbe Madhusudhana & Immanuel Bloch & Monika Aidelsburger, 2021. "Observing non-ergodicity due to kinetic constraints in tilted Fermi-Hubbard chains," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun-Hao Shi & Zheng-Hang Sun & Yong-Yi Wang & Zheng-An Wang & Yu-Ran Zhang & Wei-Guo Ma & Hao-Tian Liu & Kui Zhao & Jia-Cheng Song & Gui-Han Liang & Zheng-Yang Mei & Jia-Chi Zhang & Hao Li & Chi-Tong , 2024. "Probing spin hydrodynamics on a superconducting quantum simulator," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Faridfar, M. & Fouladi, A. Ahmadi & Vahedi, J., 2023. "Dynamical quantum phase transitions in Stark quantum spin chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    3. Wenhui Xu & Chenwei Lv & Qi Zhou, 2024. "Multipolar condensates and multipolar Josephson effects," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Henrik Wilming & Tobias J. Osborne & Kevin S. C. Decker & Christoph Karrasch, 2023. "Reviving product states in the disordered Heisenberg chain," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39468-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.