IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39402-8.html
   My bibliography  Save this article

Light-driven self-assembly of spiropyran-functionalized covalent organic framework

Author

Listed:
  • Gobinda Das

    (New York University Abu Dhabi (NYUAD), Saadiyat Island)

  • Thirumurugan Prakasam

    (New York University Abu Dhabi (NYUAD), Saadiyat Island)

  • Nour Alkhatib

    (New York University Abu Dhabi (NYUAD), Saadiyat Island)

  • Rasha G. AbdulHalim

    (New York University Abu Dhabi (NYUAD), Saadiyat Island)

  • Falguni Chandra

    (United Arab Emirates University)

  • Sudhir Kumar Sharma

    (New York University Abu Dhabi (NYUAD))

  • Bikash Garai

    (New York University Abu Dhabi (NYUAD), Saadiyat Island
    New York University Abu Dhabi (NYUAD), Saadiyat Island)

  • Sabu Varghese

    (New York University Abu Dhabi)

  • Matthew A. Addicoat

    (Nottingham Trent University)

  • Florent Ravaux

    (Technology Innovation Institute)

  • Renu Pasricha

    (New York University Abu Dhabi)

  • Ramesh Jagannathan

    (New York University Abu Dhabi (NYUAD))

  • Na’il Saleh

    (United Arab Emirates University
    United Arab Emirates University)

  • Serdal Kirmizialtin

    (New York University Abu Dhabi (NYUAD), Saadiyat Island
    New York University Abu Dhabi (NYUAD))

  • Mark A. Olson

    (Texas A&M University Corpus Christi)

  • Ali Trabolsi

    (New York University Abu Dhabi (NYUAD), Saadiyat Island
    New York University Abu Dhabi (NYUAD), Saadiyat Island)

Abstract

Controlling the number of molecular switches and their relative positioning within porous materials is critical to their functionality and properties. The proximity of many molecular switches to one another can hinder or completely suppress their response. Herein, a synthetic strategy involving mixed linkers is used to control the distribution of spiropyran-functionalized linkers in a covalent organic framework (COF). The COF contains a spiropyran in each pore which exhibits excellent reversible photoswitching behavior to its merocyanine form in the solid state in response to UV/Vis light. The spiro-COF possesses an urchin-shaped morphology and exhibits a morphological transition to 2D nanosheets and vesicles in solution upon UV light irradiation. The merocyanine-equipped COFs are extremely stable and possess a more ordered structure with enhanced photoluminescence. This approach to modulating structural isomerization in the solid state is used to develop inkless printing media, while the photomediated polarity change is used for water harvesting applications.

Suggested Citation

  • Gobinda Das & Thirumurugan Prakasam & Nour Alkhatib & Rasha G. AbdulHalim & Falguni Chandra & Sudhir Kumar Sharma & Bikash Garai & Sabu Varghese & Matthew A. Addicoat & Florent Ravaux & Renu Pasricha , 2023. "Light-driven self-assembly of spiropyran-functionalized covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39402-8
    DOI: 10.1038/s41467-023-39402-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39402-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39402-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. V. Percec & M. Glodde & T. K. Bera & Y. Miura & I. Shiyanovskaya & K. D. Singer & V. S. K. Balagurusamy & P. A. Heiney & I. Schnell & A. Rapp & H.-W. Spiess & S. D. Hudson & H. Duan, 2002. "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature, Nature, vol. 419(6905), pages 384-387, September.
    2. Dipak Samanta & Daria Galaktionova & Julius Gemen & Linda J. W. Shimon & Yael Diskin-Posner & Liat Avram & Petr Král & Rafal Klajn, 2018. "Publisher Correction: Reversible chromism of spiropyran in the cavity of a flexible coordination cage," Nature Communications, Nature, vol. 9(1), pages 1-2, December.
    3. Dipak Samanta & Daria Galaktionova & Julius Gemen & Linda J. W. Shimon & Yael Diskin-Posner & Liat Avram & Petr Král & Rafal Klajn, 2018. "Reversible chromism of spiropyran in the cavity of a flexible coordination cage," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Pintu K. Kundu & Gregory L. Olsen & Vladimir Kiss & Rafal Klajn, 2014. "Nanoporous frameworks exhibiting multiple stimuli responsiveness," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    5. Sharath Kandambeth & V. Venkatesh & Digambar B. Shinde & Sushma Kumari & Arjun Halder & Sandeep Verma & Rahul Banerjee, 2015. "Self-templated chemically stable hollow spherical covalent organic framework," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    6. Yuan-Yuan Liu & Xiang-Chun Li & Shi Wang & Tao Cheng & Huiyan Yang & Chen Liu & Yanting Gong & Wen-Yong Lai & Wei Huang, 2020. "Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ningning He & Yingdi Zou & Cheng Chen & Minghao Tan & Yingdan Zhang & Xiaofeng Li & Zhimin Jia & Jie Zhang & Honghan Long & Haiyue Peng & Kaifu Yu & Bo Jiang & Ziqian Han & Ning Liu & Yang Li & Lijian, 2024. "Constructing ordered and tunable extrinsic porosity in covalent organic frameworks via water-mediated soft-template strategy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joel Kuttruff & Marco Romanelli & Esteban Pedrueza-Villalmanzo & Jonas Allerbeck & Jacopo Fregoni & Valeria Saavedra-Becerril & Joakim Andréasson & Daniele Brida & Alexandre Dmitriev & Stefano Corni &, 2023. "Sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch-nanoantennas," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Grace C. Thaggard & Kyoung Chul Park & Jaewoong Lim & Buddhima K. P. Maldeni Kankanamalage & Johanna Haimerl & Gina R. Wilson & Margaret K. McBride & Kelly L. Forrester & Esther R. Adelson & Virginia , 2023. "Breaking the photoswitch speed limit," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Ningning He & Yingdi Zou & Cheng Chen & Minghao Tan & Yingdan Zhang & Xiaofeng Li & Zhimin Jia & Jie Zhang & Honghan Long & Haiyue Peng & Kaifu Yu & Bo Jiang & Ziqian Han & Ning Liu & Yang Li & Lijian, 2024. "Constructing ordered and tunable extrinsic porosity in covalent organic frameworks via water-mediated soft-template strategy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Qiubo Zhang & Xinxing Peng & Yifan Nie & Qi Zheng & Junyi Shangguan & Chao Zhu & Karen C. Bustillo & Peter Ercius & Linwang Wang & David T. Limmer & Haimei Zheng, 2022. "Defect-mediated ripening of core-shell nanostructures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Huanzhi Yang & Yunjun Luo & Bixin Jin & Shumeng Chi & Xiaoyu Li, 2024. "Convoluted micellar morphological transitions driven by tailorable mesogenic ordering effect from discotic mesogen-containing block copolymer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Hui Li & Caikun Cheng & Zhijie Yang & Jingjing Wei, 2022. "Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Alessandro Scirè & Valerio Annovazzi-Lodi, 2017. "Self-organization in a diversity induced thermodynamics," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-15, December.
    8. Maximilian Dreher & Pierre Martin Dombrowski & Matthias Wolfgang Tripp & Niels Münster & Ulrich Koert & Gregor Witte, 2023. "Shape control in 2D molecular nanosheets by tuning anisotropic intermolecular interactions and assembly kinetics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39402-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.