IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38983-8.html
   My bibliography  Save this article

Thermometry on individual nanoparticles highlights the impact of bimetallic interfaces

Author

Listed:
  • Marta Quintanilla

    (Universidad Autónoma de Madrid)

Abstract

A new study sheds light on the impact of bimetallic interfaces in nanomaterials for heat generation using single-particle thermometry. Moving from nanoparticle ensembles to single particles is key to developing consistent knowledge of material performance and nanoscale processes, but also involves assumptions and definitions that require careful consideration.

Suggested Citation

  • Marta Quintanilla, 2023. "Thermometry on individual nanoparticles highlights the impact of bimetallic interfaces," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38983-8
    DOI: 10.1038/s41467-023-38983-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38983-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38983-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. W. Dong, 2023. "Nanoscale thermodynamics needs the concept of a disjoining chemical potential," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Julian Gargiulo & Matias Herran & Ianina L. Violi & Ana Sousa-Castillo & Luciana P. Martinez & Simone Ezendam & Mariano Barella & Helene Giesler & Roland Grzeschik & Sebastian Schlücker & Stefan A. Ma, 2023. "Impact of bimetallic interface design on heat generation in plasmonic Au/Pd nanostructures studied by single-particle thermometry," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yicui Kang & Simão M. João & Rui Lin & Kang Liu & Li Zhu & Junwei Fu & Weng-Chon (Max) Cheong & Seunghoon Lee & Kilian Frank & Bert Nickel & Min Liu & Johannes Lischner & Emiliano Cortés, 2024. "Effect of crystal facets in plasmonic catalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38983-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.