IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38945-0.html
   My bibliography  Save this article

The double protonation of dihapto-coordinated benzene complexes enables dearomatization using aromatic nucleophiles

Author

Listed:
  • Justin T. Weatherford-Pratt

    (University of Virginia)

  • Jacob A. Smith

    (University of Virginia)

  • Jeremy M. Bloch

    (University of Virginia)

  • Megan N. Ericson

    (University of Virginia)

  • Jeffery T. Myers

    (University of Virginia)

  • Karl S. Westendorff

    (University of Virginia)

  • Diane A. Dickie

    (University of Virginia)

  • W. Dean Harman

    (University of Virginia)

Abstract

Friedel-Crafts Arylation (the Scholl reaction) is the coupling of two aromatic rings with the aid of a strong Lewis or Brønsted acid. This historically significant C–C bond forming reaction normally leads to aromatic products, often as oligomeric mixtures, dictated by the large stabilization gained upon their rearomatization. The coordination of benzene by a tungsten complex disrupts the natural course of this reaction sequence, allowing for Friedel-Crafts Arylation without rearomatization or oligomerization. Subsequent addition of a nucleophile to the coupled intermediate leads to functionalized cyclohexenes. In this work, we show that by coordinating benzene to tungsten through two carbons (dihapto-coordinate), a rarely observed double protonation of the bound benzene is enabled, allowing its subsequent coupling to a second arene without the need of a precious metal or Lewis acid catalyst.

Suggested Citation

  • Justin T. Weatherford-Pratt & Jacob A. Smith & Jeremy M. Bloch & Megan N. Ericson & Jeffery T. Myers & Karl S. Westendorff & Diane A. Dickie & W. Dean Harman, 2023. "The double protonation of dihapto-coordinated benzene complexes enables dearomatization using aromatic nucleophiles," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38945-0
    DOI: 10.1038/s41467-023-38945-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38945-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38945-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jacob A. Smith & Katy B. Wilson & Reilly E. Sonstrom & Patrick J. Kelleher & Kevin D. Welch & Emmit K. Pert & Karl S. Westendorff & Diane A. Dickie & Xiaoping Wang & Brooks H. Pate & W. Dean Harman, 2020. "Preparation of cyclohexene isotopologues and stereoisotopomers from benzene," Nature, Nature, vol. 581(7808), pages 288-293, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan D. Dabbs & Caleb C. Taylor & Martin S. Holdren & Sarah E. Brewster & Brian T. Quillin & Alvin Q. Meng & Diane A. Dickie & Brooks H. Pate & W. Dean Harman, 2024. "Designing chemical systems for precision deuteration of medicinal building blocks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Nian Li & Jinhang Li & Mingzhe Qin & Jiajun Li & Jie Han & Chengjian Zhu & Weipeng Li & Jin Xie, 2022. "Highly selective single and multiple deuteration of unactivated C(sp3)-H bonds," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38945-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.