Intracellular RNA and DNA tracking by uridine-rich internal loop tagging with fluorogenic bPNA
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-38579-2
Download full text from publisher
References listed on IDEAS
- Anna-Leigh Brown & Oscar G. Wilkins & Matthew J. Keuss & Sarah E. Hill & Matteo Zanovello & Weaverly Colleen Lee & Alexander Bampton & Flora C. Y. Lee & Laura Masino & Yue A. Qi & Sam Bryce-Smith & Ar, 2022. "TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A," Nature, Nature, vol. 603(7899), pages 131-137, March.
- X. Rosa Ma & Mercedes Prudencio & Yuka Koike & Sarat C. Vatsavayai & Garam Kim & Fred Harbinski & Adam Briner & Caitlin M. Rodriguez & Caiwei Guo & Tetsuya Akiyama & H. Broder Schmidt & Beryl B. Cummi, 2022. "TDP-43 represses cryptic exon inclusion in the FTD–ALS gene UNC13A," Nature, Nature, vol. 603(7899), pages 124-130, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jarrett Eshima & Samantha A. O’Connor & Ethan Marschall & Robert Bowser & Christopher L. Plaisier & Barbara S. Smith, 2023. "Molecular subtypes of ALS are associated with differences in patient prognosis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Rebecca San Gil & Dana Pascovici & Juliana Venturato & Heledd Brown-Wright & Prachi Mehta & Lidia Madrid San Martin & Jemma Wu & Wei Luan & Yi Kit Chui & Adekunle T. Bademosi & Shilpa Swaminathan & Se, 2024. "A transient protein folding response targets aggregation in the early phase of TDP-43-mediated neurodegeneration," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
- Salim Megat & Natalia Mora & Jason Sanogo & Olga Roman & Alberto Catanese & Najwa Ouali Alami & Axel Freischmidt & Xhuljana Mingaj & Hortense Calbiac & François Muratet & Sylvie Dirrig-Grosch & Stépha, 2023. "Integrative genetic analysis illuminates ALS heritability and identifies risk genes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Hannah E. Salapa & Patricia A. Thibault & Cole D. Libner & Yulian Ding & Joseph-Patrick W. E. Clarke & Connor Denomy & Catherine Hutchinson & Hashim M. Abidullah & S. Austin Hammond & Landon Pastushok, 2024. "hnRNP A1 dysfunction alters RNA splicing and drives neurodegeneration in multiple sclerosis (MS)," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Santiago Mora & Anna Stuckert & Rasmus Huth Friis & Kimberly Pietersz & Gith Noes-Holt & Roser Montañana-Rosell & Haoyu Wang & Andreas Toft Sørensen & Raghavendra Selvan & Joost Verhaagen & Ilary Allo, 2024. "Stabilization of V1 interneuron-motor neuron connectivity ameliorates motor phenotype in a mouse model of ALS," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Oliver J. Ziff & Jacob Neeves & Jamie Mitchell & Giulia Tyzack & Carlos Martinez-Ruiz & Raphaelle Luisier & Anob M. Chakrabarti & Nicholas McGranahan & Kevin Litchfield & Simon J. Boulton & Ammar Al-C, 2023. "Integrated transcriptome landscape of ALS identifies genome instability linked to TDP-43 pathology," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Marta Garcia-Montojo & Saeed Fathi & Cyrus Rastegar & Elena Rita Simula & Tara Doucet-O’Hare & Y. H. Hank Cheng & Rachel P. M. Abrams & Nicholas Pasternack & Nasir Malik & Muzna Bachani & Brianna Disa, 2024. "TDP-43 proteinopathy in ALS is triggered by loss of ASRGL1 and associated with HML-2 expression," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
- Richard Taylor & Fursham Hamid & Triona Fielding & Patricia M. Gordon & Megan Maloney & Eugene V. Makeyev & Corinne Houart, 2022. "Prematurely terminated intron-retaining mRNAs invade axons in SFPQ null-driven neurodegeneration and are a hallmark of ALS," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Kurt Farrell & Jack Humphrey & Timothy Chang & Yi Zhao & Yuk Yee Leung & Pavel P. Kuksa & Vishakha Patil & Wan-Ping Lee & Amanda B. Kuzma & Otto Valladares & Laura B. Cantwell & Hui Wang & Ashvin Ravi, 2024. "Genetic, transcriptomic, histological, and biochemical analysis of progressive supranuclear palsy implicates glial activation and novel risk genes," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38579-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.