IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38535-0.html
   My bibliography  Save this article

A mutation in switch I alters the load-dependent kinetics of myosin Va

Author

Listed:
  • Christopher Marang

    (University of Massachusetts)

  • Brent Scott

    (University of Massachusetts)

  • James Chambers

    (University of Massachusetts)

  • Laura K. Gunther

    (Penn State College of Medicine)

  • Christopher M. Yengo

    (Penn State College of Medicine)

  • Edward P. Debold

    (University of Massachusetts)

Abstract

Myosin Va is the molecular motor that drives intracellular vesicular transport, powered by the transduction of chemical energy from ATP into mechanical work. The coupling of the powerstroke and phosphate (Pi) release is key to understanding the transduction process, and crucial details of this process remain unclear. Therefore, we determined the effect of elevated Pi on the force-generating capacity of a mini-ensemble of myosin Va S1 (WT) in a laser trap assay. By increasing the stiffness of the laser trap we determined the effect of increasing resistive loads on the rate of Pi-induced detachment from actin, and quantified this effect using the Bell approximation. We observed that WT myosin generated higher forces and larger displacements at the higher laser trap stiffnesses in the presence of 30 mM Pi, but binding event lifetimes decreased dramatically, which is most consistent with the powerstroke preceding the release of Pi from the active site. Repeating these experiments using a construct with a mutation in switch I of the active site (S217A) caused a seven-fold increase in the load-dependence of the Pi-induced detachment rate, suggesting that the S217A region of switch I may help mediate the load-dependence of Pi-rebinding.

Suggested Citation

  • Christopher Marang & Brent Scott & James Chambers & Laura K. Gunther & Christopher M. Yengo & Edward P. Debold, 2023. "A mutation in switch I alters the load-dependent kinetics of myosin Va," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38535-0
    DOI: 10.1038/s41467-023-38535-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38535-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38535-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luisa Moretto & Marko Ušaj & Oleg Matusovsky & Dilson E. Rassier & Ran Friedman & Alf Månsson, 2022. "Multistep orthophosphate release tunes actomyosin energy transduction," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38535-0. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.